Impact of remote mutations on metallo-β-lactamase substrate specificity:: Implications for the evolution of antibiotic resistance

被引:51
作者
Oelschlaeger, P
Mayo, SL
Pleiss, J
机构
[1] Univ Stuttgart, Inst Tech Biochem, D-70569 Stuttgart, Germany
[2] CALTECH, Div Biol, Pasadena, CA 91125 USA
[3] CALTECH, Howard Hughes Med Inst, Div Biol, Pasadena, CA 91125 USA
[4] CALTECH, Howard Hughes Med Inst, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
metallo-beta-lactamase; metalloenzyme; substrate specificity; enzyme evolution; point mutation;
D O I
10.1110/ps.041093405
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of P-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP-1 from IMP-6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single-nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y, and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin, and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R-2 electron donors, which may stabilize the substrate intermediate in the binding pocket. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations). they are likely to evolve naturally.
引用
收藏
页码:765 / 774
页数:10
相关论文
共 47 条
[41]   Insights into the structure and dynamics of the dinuclear zinc β-lactamase site from Bacteroides fragilis [J].
Suárez, D ;
Brothers, EN ;
Merz, KM .
BIOCHEMISTRY, 2002, 41 (21) :6615-6630
[42]   Genetic characterization of a novel metallo-β-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe:: report from the SENTRY worldwide antimicrobial surveillance programme [J].
Toleman, MA ;
Biedenbach, D ;
Bennett, D ;
Jones, RN ;
Walsh, TR .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2003, 52 (04) :583-590
[43]   Protein building blocks preserved by recombination [J].
Voigt, CA ;
Martinez, C ;
Wang, ZG ;
Mayo, SL ;
Arnold, FH .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (07) :553-558
[44]   SEQUENCE-ANALYSIS OF THE L1 METALLO-BETA-LACTAMASE FROM XANTHOMONAS-MALTOPHILIA [J].
WALSH, TR ;
HALL, L ;
ASSINDER, SJ ;
NICHOLS, WW ;
CARTWRIGHT, SJ ;
MACGOWAN, AP ;
BENNETT, PM .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1994, 1218 (02) :199-201
[45]   On the mechanism of the metallo-β-lactamase from Bacteroides fragilis [J].
Wang, ZG ;
Fast, W ;
Benkovic, SJ .
BIOCHEMISTRY, 1999, 38 (31) :10013-10023
[46]   Mutational analysis of metallo-β-lactamase CcrA from Bacteroides fragilis [J].
Yanchak, MP ;
Taylor, RA ;
Crowder, MW .
BIOCHEMISTRY, 2000, 39 (37) :11330-11339
[47]   Kinetic properties and metal content of the metallo-β-lactamase CcrA harboring selective amino acid substitutions [J].
Yang, YJ ;
Keeney, D ;
Tang, XJ ;
Canfield, N ;
Rasmussen, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (22) :15706-15711