Visual saliency detection using information contents weighting

被引:14
作者
Duan, Qichang [1 ]
Akram, Tallha [1 ,2 ]
Duan, Pan [3 ]
Wang, Xiaogang [4 ]
机构
[1] Chongqing Univ, Sch Automat, Chongqing, Peoples R China
[2] COMSATS Inst IT, Dept Elect Engn, Wahcantt, Pakistan
[3] Chongqing Power Co, Nanan Bur, Chongqing, Peoples R China
[4] Chongqing Power Co, Tongnan Bur, Chongqing, Peoples R China
来源
OPTIK | 2016年 / 127卷 / 19期
关键词
Saliency detection; Segmentation; Fractal dimensions; CONTRAST ENHANCEMENT; ATTENTION; ALGORITHM; EXTRACTION; HISTOGRAM; GUIDANCE; FEATURES;
D O I
10.1016/j.ijleo.2016.05.027
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Visual attention is the human ability, which instinctively allows to direct our gaze towards the objects of interest in visual environment. Precise estimation of salient regions without prior knowledge is an important step in many computer vision applications. In this article, we propose a novel idea for saliency detection where we exploited ternary color space with the premonition that salient object is always salient in one or more color channels. Our contribution is threefold: first, use global information to partition image into two clusters namely foreground and background by utilizing contrast stretching and morphological theory. Second, design a weighting criteria based on proposed extended segmentation based fractal texture analysis (ESFTA), boundary connections, number of connected labels and distance from the center. Finally, we enhance saliency while diminishing the background details to generate adept, robust and appealing results. Comprehensive evaluation on standard benchmark datasets and comparison with nine state-of-the-art methods validate the effectiveness of our proposed work. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:7418 / 7430
页数:13
相关论文
共 57 条
[21]   Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing [J].
Hoseini, Pourya ;
Shayesteh, Mahrokh G. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (03) :879-893
[22]   Image Signature: Highlighting Sparse Salient Regions [J].
Hou, Xiaodi ;
Harel, Jonathan ;
Koch, Christof .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (01) :194-201
[23]   Biologically Inspired Features for Scene Classification in Video Surveillance [J].
Huang, Kaiqi ;
Tao, Dacheng ;
Yuan, Yuan ;
Li, Xuelong ;
Tan, Tieniu .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (01) :307-313
[24]   Enhanced Biologically Inspired Model for Object Recognition [J].
Huang, Yongzhen ;
Huang, Kaiqi ;
Tao, Dacheng ;
Tan, Tieniu ;
Li, Xuelong .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (06) :1668-1680
[25]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[26]  
Judd T, 2009, IEEE I CONF COMP VIS, P2106, DOI 10.1109/ICCV.2009.5459462
[27]   Segment selective dynamic histogram equalization for brightness preserving contrast enhancement of images [J].
Khan, Mohammad Farhan ;
Khan, Ekram ;
Abbasi, Z. A. .
OPTIK, 2014, 125 (03) :1385-1389
[28]   Object-of-interest image segmentation based on human attention and semantic region clustering [J].
Ko, Byoung Chul ;
Nam, Jae-Yeal .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (10) :2462-2470
[29]  
KOCH C, 1985, HUM NEUROBIOL, V4, P219
[30]   A coherent computational approach to model bottom-up visual attention [J].
Le Meur, O ;
Le Callet, P ;
Barba, D ;
Thoreau, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (05) :802-817