Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction

被引:13
作者
Du, Xinfeng [1 ]
Wang, Jiesheng [1 ]
Sun, Weizhen [2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114051, Peoples R China
[2] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing 210000, Jiangsu, Peoples R China
关键词
densely connected network; multiscale detection; parallel fusion; retinal vessel segmentation; serial embedding; IMAGES;
D O I
10.1002/mp.14944
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The segmentation results of retinal blood vessels have a significant impact on the automatic diagnosis of various ophthalmic diseases. In order to further improve the segmentation accuracy of retinal vessels, we propose an improved algorithm based on multiscale vessel detection, which extracts features through densely connected networks and reuses features. Methods A parallel fusion and serial embedding multiscale feature dense connection U-Net structure are designed. In the parallel fusion method, features of the input images are extracted for Inception multiscale convolution and dense block convolution, respectively, and then the features are fused and input into the subsequent network. In serial embedding mode, the Inception multiscale convolution structure is embedded in the dense connection network module, and then the dense connection structure is used to replace the classical convolution block in the U-Net network encoder part, so as to achieve multiscale feature extraction and efficient utilization of complex structure vessels and thereby improve the network segmentation performance. Results The experimental analysis on the standard DRIVE and CHASE_DB1 databases shows that the sensitivity, specificity, accuracy, and AUC of the parallel fusion and serial embedding methods reach 0.7854, 0.9813, 0.9563, 0.9794; 0.7876, 0.9811, 0.9565, 0.9793 and 0.8110, 0.9737, 0.9547, 0.9667; 0.8113, 0.9717, 0.9574, 0.9750, respectively. Conclusions The experimental results show that multiscale feature detection and feature dense connection can effectively enhance the network model's ability to detect blood vessels and improve the network segmentation performance, which is superior to U-Net algorithm and some mainstream retinal blood vessel segmentation algorithms at present.
引用
收藏
页码:3827 / 3841
页数:15
相关论文
共 31 条
[1]   An improved matched filter for blood vessel detection of digital retinal images [J].
Al-Rawi, Mohammed ;
Qutaishat, Munib ;
Arrar, Mohammed .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (02) :262-267
[2]  
Alom MZ, 2018, COMPUTER VISION PATT
[3]   Trainable COSFIRE filters for vessel delineation with application to retinal images [J].
Azzopardi, George ;
Strisciuglio, Nicola ;
Vento, Mario ;
Petkov, Nicolai .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :46-57
[4]   Robust retinal blood vessel segmentation using line detectors with multiple masks [J].
Biswal, Birendra ;
Pooja, Thotakura ;
Subrahmanyam, N. Bala .
IET IMAGE PROCESSING, 2018, 12 (03) :389-399
[5]   A New Hybrid Algorithm for Retinal Vessels Segmentation on Fundus Images [J].
Dharmawan, Dhimas Arief ;
Li, Di ;
Ng, Boon Poh ;
Rahardja, Susanto .
IEEE ACCESS, 2019, 7 :41885-41896
[6]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[7]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[8]   Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function [J].
Hu, Kai ;
Zhang, Zhenzhen ;
Niu, Xiaorui ;
Zhang, Yuan ;
Cao, Chunhong ;
Xiao, Fen ;
Gao, Xieping .
NEUROCOMPUTING, 2018, 309 :179-191
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images [J].
Ignacio Orlando, Jose ;
Prokofyeva, Elena ;
Blaschko, Matthew B. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (01) :16-27