On local quasi-convexity as a three-space property in topological abelian groups

被引:1
作者
Dominguez, X. [1 ]
Tarieladze, V [2 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna, Spain
[2] Georgian Tech Univ, Muskhelishvili Inst Computat Math, Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Locally quasi-convex group; Three-space property; Dually embedded subgroup; Extension of topological abelian groups;
D O I
10.1016/j.jmaa.2021.125052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a topological abelian group and H a subgroup of X. We find conditions under which local quasi-convexity of both H and X/H results in the same property for X. This is true for instance if H is precompact, or if X is metrizable and H is a dually embedded subgroup which is also either discrete or bounded torsion. We also give some general principles and point out some errors we have found in the existing literature on this problem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 36 条
[1]  
Armacost DavidL., 1981, STRUCTURE LOCALLY CO, V68
[2]  
Auenhofer L., 1999, THESIS, V384
[3]   "Varopoulos paradigm": Mackey property versus metrizability in topological groups [J].
Aussenhofer, L. ;
de la Barrera Mayoral, D. ;
Dikranjan, D. ;
Martin-Peinador, E. .
REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (01) :167-184
[4]   Arcs in the Pontryagin dual of a topological abelian group [J].
Aussenhofer, L. ;
Chasco, M. J. ;
Dominguez, X. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) :337-348
[5]   On reflexive group topologies on abelian groups of finite exponent [J].
Aussenhofer, L. ;
Gabriyelyan, S. S. .
ARCHIV DER MATHEMATIK, 2012, 99 (06) :583-588
[6]   On the non-existence of the Mackey topology for locally quasi-convex groups [J].
Aussenhofer, Lydia .
FORUM MATHEMATICUM, 2018, 30 (05) :1119-1127
[7]   Linear topologies on Z are not Mackey topologies [J].
Aussenhofer, Lydia ;
de la Barrera Mayoral, Daniel .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (06) :1340-1347
[8]   PONTRYAGIN DUALITY FOR SUBGROUPS AND QUOTIENTS OF NUCLEAR SPACES [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1986, 273 (04) :653-664
[9]   OPEN SUBGROUPS AND PONTRYAGIN DUALITY [J].
BANASZCZYK, W ;
CHASCO, MJ ;
MARTINPEINADOR, E .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (02) :195-204
[10]  
BANASZCZYK W, 1991, LECT NOTES MATH, V1466, P1