Rich dynamics and anticontrol of extinction in a prey-predator system

被引:12
作者
Danca, Marius-F [1 ,2 ]
Feckan, Michal [3 ,4 ]
Kuznetsov, Nikolay [5 ,6 ]
Chen, Guanrong [7 ]
机构
[1] Avram Iancu Univ Cluj Napoca, Dept Math & Comp Sci, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
[5] St Petersburg State Univ, Dept Appl Cybernet, St Petersburg, Russia
[6] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla, Finland
[7] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
俄罗斯科学基金会;
关键词
Prey-predator system; Anticontrol; Neimark-Sacker bifurcation; '0-1' test; Strange nonchaotic attractor; CHAOS; ATTRACTORS; BIFURCATION; DISPERSAL; PATTERNS;
D O I
10.1007/s11071-019-05272-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system or bits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete systems, it is numerically found that, for some small parameter ranges, the system seemingly presents strange nonchaotic attractors. It is shown both analytically and by numerical simulations that the original system and the anticontrolled system undergo several Neimark-Sacker bifurcations. Beside the classical numerical tools for analyzing chaotic systems, such as phase portraits, time series and power spectral density, the '0-1' test is used to differentiate regular attractors from chaotic attractors.
引用
收藏
页码:1421 / 1445
页数:25
相关论文
共 31 条
[1]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[2]  
Argyris J., 1994, ERFORSCHUNG CHAOS
[3]   Movement patterns of a specialist predator, the weasel Mustela nivalis exploiting asynchronous cyclic field vole Microtus agrestis populations [J].
Brandt, Miriam J. ;
Lambin, Xavier .
ACTA THERIOLOGICA, 2007, 52 (01) :13-25
[4]   Feedback control of Lyapunov exponents for discrete-time dynamical systems [J].
Chen, GR ;
Lai, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07) :1341-1349
[5]   Detailed analysis of a nonlinear prey-predator model [J].
Danca, M ;
Codreanu, S ;
Bako, B .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :11-20
[6]   Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J].
Fan, M ;
Wang, K .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (9-10) :951-961
[7]   Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response [J].
Ghaziani, R. Khoshsiar ;
Govaerts, W. ;
Sonck, C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1451-1465
[8]   Applicability of 0-1 test for strange nonchaotic attractors [J].
Gopal, R. ;
Venkatesan, A. ;
Lakshmanan, M. .
CHAOS, 2013, 23 (02)
[9]   A new test for chaos in deterministic systems [J].
Gottwald, GA ;
Melbourne, I .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2042) :603-611
[10]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268