The Hajek-Renyi-Chow maximal inequality and a strong law of large numbers in Riesz spaces

被引:2
|
作者
Kuo, Wen-Chi [1 ]
Rodda, David F. [1 ]
Watson, Bruce A. [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Riesz spaces; Vector lattices; Maximal inequality; Clarkson's inequality; Submartingale convergence; Strong law of large numbers; CONVERGENCE;
D O I
10.1016/j.jmaa.2019.123462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalize the Hajek-Renyi-Chow maximal inequality for submartingales to L-P type Riesz spaces with conditional expectation operators. As applications we obtain a submartingale convergence theorem and a strong law of large numbers in Riesz spaces. Along the way we develop a Riesz space variant of the Clarkson's inequality for 1 <= p <= 2. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Strong Law of Large Numbers for branching diffusions
    Englaender, Janos
    Harris, Simon C.
    Kyprianou, Andreas E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 279 - 298
  • [32] Strong Law of Large Numbers for α-Mixing Sequences
    Yang Wenquan
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 : 440 - 443
  • [33] A generalization of the Petrov strong law of large numbers
    Korchevsky, Valery
    STATISTICS & PROBABILITY LETTERS, 2015, 104 : 102 - 108
  • [34] On the strong law of large numbers and additive functions
    István Berkes
    Wolfgang Müller
    Michel Weber
    Periodica Mathematica Hungarica, 2011, 62 : 1 - 12
  • [35] A STRONG LAW OF LARGE NUMBERS FOR RULED SUMS
    SKOVORODA, B
    MIKOSCH, T
    STATISTICS & PROBABILITY LETTERS, 1992, 13 (02) : 129 - 137
  • [36] On the Strong Law of Large Numbers for END Sequences
    Hao LI
    Xiaoqin LI
    Pengju DUAN
    JournalofMathematicalResearchwithApplications, 2020, 40 (04) : 432 - 440
  • [37] Strong Law of Large Numbers for a Class of Superdiffusions
    Liu, Rong-Li
    Ren, Yan-Xia
    Song, Renming
    ACTA APPLICANDAE MATHEMATICAE, 2013, 123 (01) : 73 - 97
  • [38] The Strong Law of Large Numbers for a Stationary Sequence
    Petrov, V. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2016, 49 (04) : 371 - 372
  • [39] EXTENSIONS OF RAJCHMAN STRONG LAW OF LARGE NUMBERS
    CHANDRA, TK
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1991, 53 : 118 - 121
  • [40] Strong law of large numbers for sums of products
    Zhang, CH
    ANNALS OF PROBABILITY, 1996, 24 (03) : 1589 - 1615