Fully implicit discontinuous finite element methods for two-phase flow

被引:63
作者
Epshteyn, Y. [1 ]
Riviere, B. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
nonsymmetric interior penalty Galerkin; h- and p-version; Newton-Raphson; heterogeneous media; quarter-five spot;
D O I
10.1016/j.apnum.2006.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two schemes based on discontinuous Galerkin methods for modeling fully implicit formulations of two-phase flow problems arising in porous media. Convergence with respect to uniform mesh refinement or increase in the polynomial degree are considered. Compared to sequential discontinuous schemes, our proposed schemes do not require slope limiting or upwind stabilization techniques. Numerical examples of homogeneous and heterogeneous media on structured and unstructured meshes show the robustness of the method. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:383 / 401
页数:19
相关论文
共 29 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[3]  
BASTIAN P, 2004, 200428 U HEID
[4]  
BROOKS RH, 1964, 3 HYDR PROP POR MED
[5]  
Chavent G, 1986, STUDIES MATH ITS APP
[6]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[7]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[8]  
EPSHTEYN Y, 2006, IN PRESS COMMUNICATI
[9]  
ESLINGER O, 2005, THESIS U TEXAS AUSTI
[10]   A CONTROL VOLUME FINITE-ELEMENT APPROACH TO NAPL GROUNDWATER CONTAMINATION [J].
FORSYTH, PA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (05) :1029-1057