Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control

被引:33
作者
Hager, WilliamW. [1 ]
Hou, Hongyan [2 ]
Rao, Anil V. [3 ]
机构
[1] Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Univ Florida, Dept Mech & Aerosp Engn, POB 116250, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Gauss collocation method; Convergence rate; Optimal control; Orthogonal collocation; DIRECT TRAJECTORY OPTIMIZATION; PSEUDOSPECTRAL METHODS; EULER APPROXIMATION; COSTATE ESTIMATION; STATE;
D O I
10.1007/s10957-016-0929-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A local convergence rate is established for an orthogonal collocation method based on Gauss quadrature applied to an unconstrained optimal control problem. If the continuous problem has a smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as the number of collocation points increases, the discrete solution converges to the continuous solution at the collocation points, exponentially fast in the sup-norm. Numerical examples illustrating the convergence theory are provided.
引用
收藏
页码:801 / 824
页数:24
相关论文
共 26 条
[1]  
[Anonymous], 2013, Matrix Analysis
[2]   Direct trajectory optimization and costate estimation via an orthogonal collocation method [J].
Benson, David A. ;
Huntington, Geoffrey T. ;
Thorvaldsen, Tom P. ;
Rao, Anil V. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) :1435-1440
[3]   Error bounds for Euler approximation of a state and control constrained optimal control problem [J].
Dontchev, AL ;
Hager, WW ;
Malanowski, K .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (5-6) :653-682
[4]   LIPSCHITZIAN STABILITY IN NONLINEAR CONTROL AND OPTIMIZATION [J].
DONTCHEV, AL ;
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (03) :569-603
[5]  
Dontchev AL, 2001, MATH COMPUT, V70, P173, DOI 10.1090/S0025-5718-00-01184-4
[6]   Second-order Runge-Kutta approximations in control constrained optimal control [J].
Dontchev, AL ;
Hager, WW ;
Veliov, VM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :202-226
[7]   THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS [J].
ELNAGAR, G ;
KAZEMI, MA ;
RAZZAGHI, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) :1793-1796
[8]   Pseudospectral chebyshev optimal control of constrained nonlinear dynamical systems [J].
Elnagar, GN .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 11 (02) :195-217
[9]  
Elschner J., 1993, J INTEGRAL EQUAT, V5, P47, DOI DOI 10.1216/jiea/1181075727
[10]   Direct trajectory optimization by a Chebyshev pseudospectral method [J].
Fahroo, F ;
Ross, IM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (01) :160-166