Synergistic effect of electron transport layer and colloidal quantum dot solid enable PbSe quantum dot solar cell achieving over 10 % efficiency

被引:48
作者
Hu, Long [1 ]
Geng, Xun [1 ]
Singh, Simrjit [1 ]
Shi, Junjie [1 ]
Hu, Yicong [2 ]
Li, Shaoyuan [2 ,3 ]
Guan, Xinwei [1 ]
He, Tengyue [1 ]
Li, Xiaoning [5 ,6 ]
Cheng, Zhenxiang [5 ,6 ]
Patterson, Robert [2 ]
Huang, Shujuan [2 ,4 ]
Wu, Tom [1 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Australian Ctr Adv Photovolta, Sydney, NSW, Australia
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, State Key Lab Complex Nonferrous Met Resources Cl, Kunming, Yunnan, Peoples R China
[4] Macquarie Univ, Sch Engn, Sydney, NSW 2109, Australia
[5] Univ Wollongong, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[6] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
关键词
PbSe quantum dot solar cell; Phase transfer ligand exchange; SnO2; PCBM layer; Charge transport layer; ENERGY-CONVERSION; PERFORMANCE; NANOCRYSTALS; EXTRACTION; FILMS;
D O I
10.1016/j.nanoen.2019.103922
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
PbSe colloidal quantum dots (CQDs) possess the advantages of efficient multiple exciton generation (MEG) and a larger Bohr exciton radius compared with PbS CQDs, suggesting that PbSe CQDs can enable superior charge carrier generation and transport in optoelectronic devices. However, the efficiency of PbSe CQD solar cell is generally much lower than that of the PbS counterpart. This is due to the much more research effort dedicated to PbS CQDs solar cells, where effective strategies of ligand exchange, device configuration and charge transport layer engineering have been developed. Here, we combined ligand exchange and charge transport layer engineering to optimize PbSe CQD solar cell performance. The PbSe CQD absorber layer was deposited via one-step ink method on SnO2 with an ultra-thin PCBM serving as a modification interlayer. The champion device with the structure of ITO/SnO2/PCBM/PbSe-PbI2/PbS-EDT/Au achieved a 10.4% efficiency, which to the best of our knowledge the highest efficiency reported to date for PbSe CQD solar cell. This work demonstrates that PbSe CQDs are very promising for next-generation solution-processed photovoltaic technology with low cost and high performance.
引用
收藏
页数:8
相关论文
共 41 条
[1]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[2]   High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions [J].
Azmi, Randi ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ACS ENERGY LETTERS, 2016, 1 (01) :100-106
[3]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[4]   Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2 buffer layer [J].
Chen, Zihan ;
Zhang, Zhilong ;
Yang, Jianfeng ;
Chen, Weijian ;
Teh, Zhi Li ;
Wang, Dian ;
Yuan, Lin ;
Zhang, Jianbing ;
Stride, John A. ;
Conibeer, Gavin J. ;
Patterson, Robert J. ;
Huang, Shujuan .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (37) :9861-9866
[5]   Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics [J].
Choi, Jongmin ;
Jo, Jea Woong ;
de Arquer, F. Pelayo Garcia ;
Zhao, Yong-Biao ;
Sun, Bin ;
Kim, Junghwan ;
Choi, Min-Jae ;
Baek, Se-Woong ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Nam, Dae-Hyun ;
Li, Peicheng ;
Ouellette, Olivier ;
Kim, Younghoon ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Lu, Zheng-Hong ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2018, 30 (29)
[6]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/NMAT3984, 10.1038/nmat3984]
[7]   Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells [J].
Chuang, Chia-Hao Marcus ;
Maurano, Andrea ;
Brandt, Riley E. ;
Hwang, Gyu Weon ;
Jean, Joel ;
Buonassisi, Tonio ;
Bulovic, Vladimir ;
Bawendi, Moungi G. .
NANO LETTERS, 2015, 15 (05) :3286-3294
[8]   Quantum Confinement-Tunable Ultrafast Charge Transfer at the PbS Quantum Dot and Phenyl-C61-butyric Acid Methyl Ester Interface [J].
El-Ballouli, Ala'a O. ;
Alarousu, Erkki ;
Bernardi, Marco ;
Aly, Shawkat M. ;
Lagrow, Alec P. ;
Bakr, Osman M. ;
Mohammed, Omar F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :6952-6959
[9]   Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells [J].
Etgar, Lioz ;
Moehl, Thomas ;
Gabriel, Stefanie ;
Hickey, Stephen G. ;
Eychmueller, Alexander ;
Graetzel, Michael .
ACS NANO, 2012, 6 (04) :3092-3099
[10]   Colloidal quantum dot solar cell power conversion efficiency optimization using analysis of current-voltage characteristics and electrode contact imaging by lock-in carrierography [J].
Hu, Lilei ;
Liu, Mengxia ;
Mandelis, Andreas ;
Melnikov, Alexander ;
Sargent, Edward H. .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (12) :1034-1050