Existence of periodic solutions for a kind of second-order neutral functional differential equation

被引:26
作者
Lu, SP [1 ]
Ge, WG
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solution; continuation theorem; neutral functional differential equation;
D O I
10.1016/j.amc.2003.08.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of the continuation theorem of coincidence degree theory, we study a kind of second-order neutral functional differential equation as follows d(2)/dt(2) (u(t) - Sigma(j=1)(n)cju(t - r(j))) = f(u(t))u(1)(t) + alpha(t)g(u(t)) +Sigma(j=1)(n)beta(j)(t)g(u(t - y(j)(t)) + p(t). Some new results on the existence of periodic solutions are obtained. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 15 条
[1]   THE LERAY-SCHAUDER DEGREE OF S1-EQUIVARIANT OPERATORS ASSOCIATED TO AUTONOMOUS NEUTRAL EQUATIONS IN SPACES OF PERIODIC-FUNCTIONS [J].
BARTSCH, T ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (01) :90-99
[2]   Periodic solutions of convex neutral functional differential equations [J].
Fan, M ;
Wang, K .
TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (01) :47-59
[3]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[4]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[5]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[6]   PERIODIC-SOLUTIONS OF NON-LINEAR DELAY EQUATIONS [J].
LAYTON, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 77 (01) :198-204
[7]  
LU S, IN PRESS APPL MATH L
[8]   Existence of positive periodic solutions for neutral functional differential equations with deviating arguments [J].
Lu S. ;
Ge W. .
Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (4) :382-390
[9]  
[鲁世平 Lu Shiping], 2002, [数学学报, Acta Mathematica Sinica], V45, P811
[10]   Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J].
Lu, SP ;
Ge, WG .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :195-209