A Multiway Semi-supervised Online Sequential Extreme Learning Machine for Facial Expression Recognition with Kinect RGB-D Images

被引:0
作者
Jia, Xibin [1 ]
Chen, Xinyuan [1 ]
Miao, Jun [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing, Peoples R China
来源
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II | 2017年 / 10362卷
关键词
Extreme learning machine; Semi-supervising; On-line sequential learning; Multi-way structure; Facial expression recognition; NETWORKS; EMOTION;
D O I
10.1007/978-3-319-63312-1_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to develop a facial expression recognition algorithm for a personal digital assistance application. Based on the Kinect RGB-D images, we propose a multiway extreme learning machine (MW-ELM) for facial expression recognition, which reduces the computing complexity significantly by processing the RGB and Depth channels separately at the input layer. Referring to our earlier work on semi-supervised online sequential extreme learning machine (SOS-ELM) that enhances the application to do the fast and incremental learning based on a few labeled samples together with some un-labeled samples of the specific user, we propose to do the parameter training with semi-supervising and on-line sequential methods for the higher hidden layer. The experiment of our proposed multiway semi-supervised online sequential extreme learning machine (MW-SOS-ELM) applying in the facial expression recognition, shows that our proposed approach achieves almost the same recognition accuracy with SOS-ELM, but reduces recognition time significantly, under the same configuration of hidden nodes. Additionally, the experiments show that our semi-supervised learning scheme reduces the requirement of labeled data sharply.
引用
收藏
页码:240 / 253
页数:14
相关论文
共 50 条
  • [1] Density-based semi-supervised online sequential extreme learning machine
    Xia, Min
    Wang, Jie
    Liu, Jia
    Weng, Liguo
    Xu, Yiqing
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) : 7747 - 7758
  • [2] Density-based semi-supervised online sequential extreme learning machine
    Min Xia
    Jie Wang
    Jia Liu
    Liguo Weng
    Yiqing Xu
    Neural Computing and Applications, 2020, 32 : 7747 - 7758
  • [3] Online RGB-D Gesture Recognition with Extreme Learning Machines
    Chen, Xi
    Koskela, Markus
    ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2013, : 467 - 474
  • [4] Hessian semi-supervised extreme learning machine
    Krishnasamy, Ganesh
    Paramesran, Raveendran
    NEUROCOMPUTING, 2016, 207 : 560 - 567
  • [5] Lagrangian supervised and semi-supervised extreme learning machine
    Ma, Jun
    Wen, Yakun
    Yang, Liming
    APPLIED INTELLIGENCE, 2019, 49 (02) : 303 - 318
  • [6] Lagrangian supervised and semi-supervised extreme learning machine
    Jun Ma
    Yakun Wen
    Liming Yang
    Applied Intelligence, 2019, 49 : 303 - 318
  • [7] Robust semi-supervised extreme learning machine
    Pei, Huimin
    Wang, Kuaini
    Lin, Qiang
    Zhong, Ping
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 203 - 220
  • [8] An online semi-supervised P300 speller based on extreme learning machine
    Wang, Junjie
    Gu, Zhenghui
    Yu, Zhuliang
    Li, Yuanqing
    NEUROCOMPUTING, 2017, 269 : 148 - 151
  • [9] Semi-supervised Learning of Deep Difference Features for Facial Expression Recognition
    Xu, Can
    Xu, Ruyi
    Chen, Jingying
    Liu, Leyuan
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 245 - 254
  • [10] Robust facial expression recognition using RGB-D images and multichannel features
    Linqin Cai
    Hongbo Xu
    Yang Yang
    Jimin Yu
    Multimedia Tools and Applications, 2019, 78 : 28591 - 28607