LIE SUPER-BIALGEBRA STRUCTURES ON GENERALIZED SUPER-VIRASORO ALGEBRAS

被引:0
作者
Yang Hengyun [1 ,2 ]
Su Yucai [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Shanghai Maritime Univ, Dept Math, Shanghai 200135, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
Lie super-bialgebras; Yang-Baxter equation; generalized super-Virasoro algebras; HARISH-CHANDRA MODULES; CLASSIFICATION; WITT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras L are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if H-1 (L, L circle times L) = 0.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 16 条
[1]   SUPERSYMMETRIC STRINGS AND COLOR CONFINEMENT [J].
ADEMOLLO, M ;
BRINK, L ;
DADDA, A ;
DAURIA, R ;
NAPOLITANO, E ;
SCIUTO, S ;
DELGIUDICE, E ;
DIVECCHIA, P ;
FERRARA, S ;
GLIOZZI, F ;
MUSTO, R ;
PETTORINO, R .
PHYSICS LETTERS B, 1976, 62 (01) :105-110
[2]  
[Anonymous], 1987, P INT C MATH
[3]  
DRINFELD VG, 1983, DOKL AKAD NAUK SSSR+, V268, P285
[4]   Superconformal algebras and transitive group actions on quadrics [J].
Kac, VG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) :233-252
[5]  
KAC VG, 1988, STRINGS, V88, P77
[6]   A CLASS OF INFINITE-DIMENSIONAL LIE BIALGEBRAS CONTAINING THE VIRASORO ALGEBRA [J].
MICHAELIS, W .
ADVANCES IN MATHEMATICS, 1994, 107 (02) :365-392
[7]   Classification of the Lie bialgebra structures on the Witt and Virasoro algebras [J].
Ng, SH ;
Taft, EJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) :67-88
[8]   THE STRUCTURE OF THE DUAL LIE CO-ALGEBRA OF THE WITT ALGEBRA [J].
NICHOLS, WD .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 68 (03) :359-364
[9]   THE HIGHER RANK VIRASORO ALGEBRAS [J].
PATERA, J ;
ZASSENHAUS, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) :1-14
[10]   Classification of Harish-Chandra modules over the higher rank Virasoro algebras [J].
Su, YC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) :539-551