Singular points and an upper bound of medians in upper semimodular lattices

被引:3
作者
Li, JL
Boukaabar, K
机构
[1] Shawnee State Univ, Dept Math, Portsmouth, OH 45662 USA
[2] Calif Univ Penn, Dept Math & Comp Sci, California, PA 15419 USA
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2000年 / 17卷 / 03期
关键词
majority rule; median; semimodular lattice; singular point;
D O I
10.1023/A:1026760432073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a k-tuple P=(x(1),x(2),...,x(k)) in a finite lattice X endowed with the lattice metric d, a median of P is an element m of X minimizing the sum Sigma (i)d(m,x(i)). If X is an upper semimodular lattice, Leclerc proved that a lower bound of the medians is c(P), the majority rule and he pointed out an open problem: "Is c(1)(P)=boolean OR (i)x(i), the upper bound of the medians?" This paper shows that the upper bound is not c(1)(P) and gives the best possible upper bound.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 14 条
[1]  
[Anonymous], MATH SCI HUMAINES
[2]  
[Anonymous], MATH SCI HUM
[3]   MEDIANS IN MEDIAN GRAPHS [J].
BANDELT, HJ ;
BARTHELEMY, JP .
DISCRETE APPLIED MATHEMATICS, 1984, 8 (02) :131-142
[4]  
BANDELT HJ, IN PRESS MATH OPER R
[5]   A FORMAL THEORY OF CONSENSUS [J].
BARTHELEMY, JP ;
JANOWITZ, MF .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (03) :305-322
[6]   ON THE USE OF ORDERED SETS IN PROBLEMS OF COMPARISON AND CONSENSUS OF CLASSIFICATIONS [J].
BARTHELEMY, JP ;
LECLERC, B ;
MONJARDET, B .
JOURNAL OF CLASSIFICATION, 1986, 3 (02) :187-224
[7]  
BARTHELEMY JP, 1995, PARTITIONING DATA SE, P3
[8]  
Birkhoff G, 1967, Lattice Theory, V3
[9]   MEDIANS AND MAJORITIES IN SEMIMODULAR LATTICES [J].
LECLERC, B .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :266-276
[10]  
LECLERC B, 1998, ADV DATA SCI CLASSIF, P81