On solvable groups and circulant graphs

被引:5
作者
Dobson, E [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70808 USA
关键词
D O I
10.1006/eujc.2000.0412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be Euler's phi function. We prove that a vertex-transitive graph Gamma of order n, with gcd(n, phi(n)) = 1, is isomorphic to a circulant graph of order n if and only if Aut(Gamma) contains a transitive solvable subgroup. As a corollary, we prove that every vertex-transitive graph Gamma of order n is isomorphic to a circulant graph of order n if and only if for every such Gamma, Aut(Gamma) contains a transitive solvable subgroup and n = 4, 6, or gcd(n, phi(n)) = 1. (C) 2000 Academic Press.
引用
收藏
页码:881 / 885
页数:5
相关论文
共 13 条
[1]   ISOMORPHISM OF CIRCULANT GRAPHS AND DIGRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
DISCRETE MATHEMATICS, 1979, 25 (02) :97-108
[2]   ON WEAKLY SYMMETRICAL GRAPHS OF ORDER TWICE A PRIME [J].
CHENG, Y ;
OXLEY, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (02) :196-211
[3]  
Dixon JD., 1996, PERMUTATION GROUPS, DOI DOI 10.1007/978-1-4612-0731-3
[4]   Isomorphism problem for Cayley graphs of Z(p)(3) [J].
Dobson, E .
DISCRETE MATHEMATICS, 1995, 147 (1-3) :87-94
[5]  
Hungerford, 1974, ALGEBRA GRAD TEXTS M, V73
[6]  
Marusci D., 1988, J COMBIN MATH COMBIN, V4, P97
[7]   CHARACTERIZING VERTEX-TRANSITIVE PQ-GRAPHS WITH AN IMPRIMITIVE AUTOMORPHISM SUBGROUP [J].
MARUSIC, D ;
SCAPELLATO, R .
JOURNAL OF GRAPH THEORY, 1992, 16 (04) :375-387
[8]  
Marusic D., 1983, ARS COMBINATORIA, V16B, P297
[9]   VERTEX-TRANSITIVE GRAPHS WHICH ARE NOT CAYLEY-GRAPHS .1. [J].
MCKAY, BD ;
PRAEGER, CE .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 :53-63
[10]   ISOMORPHISM-PROBLEM FOR RELATIONAL STRUCTURES WITH A CYCLIC AUTOMORPHISM [J].
PALFY, PP .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (01) :35-43