The two-dimensional elasticity of a chiral hinge lattice metamaterial

被引:46
作者
Zhang, Wenjiao [1 ,2 ]
Neville, Robin [2 ]
Zhang, Dayi [2 ,3 ]
Scarpa, Fabrizio [2 ]
Wang, Lifeng [4 ]
Lakes, Roderic [5 ]
机构
[1] Northeast Agr Univ, Sch Engn, 59 Mucai St, Harbin 150030, Heilongjiang, Peoples R China
[2] Univ Bristol, Bristol Composites Inst ACCIS, Bristol BS8 1TR, Avon, England
[3] Beijng Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[4] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA
[5] Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
Lattice; Metamaterial; Chiral; Elasticity; Tension; Shear; NEGATIVE POISSONS RATIO; AUXETIC MECHANICAL METAMATERIALS; HONEYCOMBS; BEHAVIOR; HOMOGENIZATION; CONSTANTS; SHAPE; FOAM; CUT;
D O I
10.1016/j.ijsolstr.2018.02.027
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a lattice structure defined by patterns of slits that follow a rotational symmetry (chiral) configuration. The chiral pattern of the slits creates a series of hinges that produce deformation mechanisms for the lattice due to bending of the ribs, leading to a marginal negative Poisson's ratio. The engineering constants are modeled using theoretical and numerical Finite Element simulations. The results are bench-marked with experimental data obtained from uniaxial and off-axis tensile tests, with an overall excellent agreement. The chiral hinge lattice is almost one order of magnitude more compliant than other configurations with patterned slits and - in contrast to other chiral micropolar media - exhibits an in-plane shear modulus that closely obeys the relation between Young's modulus and Poisson's ratio in homogeneous isotropic linear elastic materials. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 54 条
[1]   The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs [J].
Alderson, A. ;
Alderson, K. L. ;
Chirima, G. ;
Ravirala, N. ;
Zied, K. M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1034-1041
[2]   Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J].
Alderson, A. ;
Alderson, K. L. ;
Attard, D. ;
Evans, K. E. ;
Gatt, R. ;
Grima, J. N. ;
Miller, W. ;
Ravirala, N. ;
Smith, C. W. ;
Zied, K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1042-1048
[3]  
[Anonymous], 1890, Math. Ann.
[4]  
[Anonymous], ANSYS HELP DOCUMENTA
[5]   Homogenization of periodic hexa- and tetrachiral cellular solids [J].
Bacigalupo, Andrea ;
Gambarotta, Luigi .
COMPOSITE STRUCTURES, 2014, 116 :461-476
[6]   Negative Poisson's Ratio Behavior Induced by an Elastic Instability [J].
Bertoldi, Katia ;
Reis, Pedro M. ;
Willshaw, Stephen ;
Mullin, Tom .
ADVANCED MATERIALS, 2010, 22 (03) :361-+
[7]   Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process [J].
Bettini, Paolo ;
Airoldi, Alessandro ;
Sala, Giuseppe ;
Di Landro, Luca ;
Ruzzene, Massimo ;
Spadoni, Alessandro .
COMPOSITES PART B-ENGINEERING, 2010, 41 (02) :133-147
[8]   Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials [J].
Billon, Kevin ;
Zampetakis, Ioannis ;
Scarpa, Fabrizio ;
Ouisse, Morvan ;
Sadoulet-Reboul, Emeline ;
Collet, Manuel ;
Perriman, Adam ;
Hetherington, Alistair .
COMPOSITE STRUCTURES, 2017, 160 :1042-1050
[9]   Micropolar continuum modelling of bi-dimensional tetrachiral lattices [J].
Chen, Y. ;
Liu, X. N. ;
Hu, G. K. ;
Sun, Q. P. ;
Zheng, Q. S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2165)
[10]   Elasticity of anti-tetrachiral anisotropic lattices [J].
Chen, Y. J. ;
Scarpa, F. ;
Liu, Y. J. ;
Leng, J. S. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (06) :996-1004