Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions

被引:18
作者
Adamovic, Drazen [1 ]
Kac, Victor G. [2 ]
Frajria, Pierluigi Moseneder [3 ]
Papi, Paolo [4 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] MIT, Dept Math, 77 Mass Ave, Cambridge, MA 02139 USA
[3] Politecn Milan, Polo Reg Como, Via Valleggio 11, I-22100 Como, Italy
[4] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
来源
JAPANESE JOURNAL OF MATHEMATICS | 2017年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
conformal embedding; vertex algebra; W-algebra; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; QUANTUM REDUCTION; FINITE; EXTENSIONS;
D O I
10.1007/s11537-017-1621-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present methods for computing the explicit decomposition of the minimal simple affine W-algebra as a module for its maximal affine subalgebra at a conformal level k, that is, whenever the Virasoro vectors of and coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when is a semisimple Lie algebra, we show that, for a suitable conformal level k, is isomorphic to an extension of by its simple module. We are able to prove that in certain cases is a simple current extension of . In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra at k = -8/3. We prove, as conjectured in [3], that is isomorphic to the vertex algebra , and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra at certain admissible levels and for at arbitrary levels.
引用
收藏
页码:261 / 315
页数:55
相关论文
共 38 条
[31]   Quantum reduction and representation theory of superconformal algebras (vol 185, pg 400, 2004) [J].
Kac, VG ;
Wakimoto, M .
ADVANCES IN MATHEMATICS, 2005, 193 (02) :453-455
[32]   Quantum reduction and representation theory of superconformal algebras [J].
Kac, VG ;
Wakimoto, M .
ADVANCES IN MATHEMATICS, 2004, 185 (02) :400-458
[33]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96
[34]   Conformal Embeddings and Simple Current Extensions [J].
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Xu, Feng .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) :5229-5288
[35]  
Kazhdan D., 1994, J. Am. Math. Soc., V7, P335, DOI [10.1090/S0894-0347-1994-1239506-X, 10.1090/s0894-0347-1993-99999-x, DOI 10.1090/S0894-0347-1993-99999-X]
[36]   A CHARACTERIZATION OF VERTEX ALGEBRAS ASSOCIATED TO EVEN LATTICES [J].
LI, HH ;
XU, XP .
JOURNAL OF ALGEBRA, 1995, 173 (02) :253-270
[37]   Certain extensions of vertex operator algebras of affine type [J].
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) :653-696