Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions

被引:18
作者
Adamovic, Drazen [1 ]
Kac, Victor G. [2 ]
Frajria, Pierluigi Moseneder [3 ]
Papi, Paolo [4 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] MIT, Dept Math, 77 Mass Ave, Cambridge, MA 02139 USA
[3] Politecn Milan, Polo Reg Como, Via Valleggio 11, I-22100 Como, Italy
[4] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
来源
JAPANESE JOURNAL OF MATHEMATICS | 2017年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
conformal embedding; vertex algebra; W-algebra; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; QUANTUM REDUCTION; FINITE; EXTENSIONS;
D O I
10.1007/s11537-017-1621-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present methods for computing the explicit decomposition of the minimal simple affine W-algebra as a module for its maximal affine subalgebra at a conformal level k, that is, whenever the Virasoro vectors of and coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when is a semisimple Lie algebra, we show that, for a suitable conformal level k, is isomorphic to an extension of by its simple module. We are able to prove that in certain cases is a simple current extension of . In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra at k = -8/3. We prove, as conjectured in [3], that is isomorphic to the vertex algebra , and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra at certain admissible levels and for at arbitrary levels.
引用
收藏
页码:261 / 315
页数:55
相关论文
共 38 条
[1]  
Abe T, 2007, MATH Z, V255, P755, DOI 10.1007/s00209-006-0048-5
[2]  
Adamovic D, 1999, INT MATH RES NOTICES, V1999, P61
[3]   On the triplet vertex algebra W(p) [J].
Adamovic, Drazen ;
Milas, Antun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2664-2699
[4]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152
[5]   Finite vs. Infinite Decompositions in Conformal Embeddings [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) :445-473
[7]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[8]   FUSION RULES AND COMPLETE REDUCIBILITY OF CERTAIN MODULES FOR AFFINE LIE ALGEBRAS [J].
Adamovic, Drazen ;
Perse, Ozren .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)
[9]   Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras [J].
Adamovic, Drazen ;
Perse, Ozren .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (01) :51-64
[10]  
[Anonymous], 2006, LIE THEORY ITS APPL