Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5)

被引:94
作者
Zhou, A. G. [1 ]
Barsoum, M. W. [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
关键词
Ceramics; Elasticity; Solid solution; Modeling; MECHANICAL-PROPERTIES; COMPRESSIVE DEFORMATION; SINGLE-CRYSTALS; BEHAVIOR; TEMPERATURE; TI3SIC2; STRAIN; NANOINDENTATIONS; MICROSTRUCTURE; BANDS;
D O I
10.1016/j.jallcom.2010.03.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper four ternary MAX phases, Ti3AlC2, Ti2AlC, Ti3Al(C-0.5,N-0.5)(2) and Ti2Al(C-0.5,N-0.5), were fabricated by hot pressing or hot isostatic pressing. The microstructures were characterized and found to be comprised of plate-like grains, 70-130 mu m in diameter and 5-10 mu m thick. Because all compositions traced fully reversible, reproducible, hysteretic loops during uniaxial cyclic compression tests they were classified as kinking nonlinear elastic (KNE) solids. When the results were analyzed using our recently developed microscale incipient kink band (IKB) model, the various relationships predicted among the three independently measured values - stress, nonlinear strain and dissipated energy - were exceptionally well adhered to. From the results we estimate the critical resolved shear stresses, CRSS, of the basal plane dislocations to range from 24 to 60 MPa. We also show that the relationship between the CRSS and grain size is of a Hall-Petch type. The reversible dislocation density is estimated to be (1-9) x 10(13) m(-2) at stresses that ranged from approximate to 300 to 650 MPa. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 46 条
[1]  
AMINI S, 2010, MAT SCI E A IN PRESS
[2]   Synthesis and elastic and mechanical properties of Cr2GeC [J].
Amini, Shahram ;
Zhou, Aiguo ;
Gupta, Surojit ;
DeVillier, Andrew ;
Finkel, Peter ;
Barsoum, Michel W. .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (08) :2157-2165
[3]   Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5 [J].
Barsoum, MW ;
Ali, M ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2000, 31 (07) :1857-1865
[4]   Kinking nonlinear elastic solids, nanoindentations, and geology [J].
Barsoum, MW ;
Murugaiah, A ;
Kalidindi, SR ;
Zhen, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :255508-1
[5]   Microscale modeling of kinking nonlinear elastic solids [J].
Barsoum, MW ;
Zhen, T ;
Zhou, A ;
Basu, S ;
Kalidindi, SR .
PHYSICAL REVIEW B, 2005, 71 (13)
[6]   Kink bands, nonlinear elasticity and nanoindentations in graphite [J].
Barsoum, MW ;
Murugaiah, A ;
Kalidindi, SR ;
Zhen, T ;
Gogotsi, Y .
CARBON, 2004, 42 (8-9) :1435-1445
[7]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[8]   Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1GPa [J].
Barsoum, MW ;
Zhen, T ;
Kalidindi, SR ;
Radovic, M ;
Murugaiah, A .
NATURE MATERIALS, 2003, 2 (02) :107-111
[9]   Room-temperature ductile carbides [J].
Barsoum, MW ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (02) :363-369
[10]   Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J].
Barsoum, MW ;
ElRaghy, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (07) :1953-1956