Finitely presented subgroups of automatic groups and their isoperimetric functions

被引:16
作者
Baumslag, G
Bridson, MR
Miller, CF
Short, H
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] Math Inst, Oxford OX1 3LB, England
[3] Univ Melbourne, Dept Math, Parkville, Vic 3052, Australia
[4] Univ Aix Marseille 1, Ctr Math & Informat, URA 225, F-13453 Marseille 13, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1997年 / 56卷
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024610797005395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a general technique for embedding certain amalgamated products into direct products. This technique provides us with a way of constructing a host of finitely presented subgroups of automatic groups which are not even asynchronously automatic. We can also arrange that such subgroups satisfy, at best, an exponential isoperimetric inequality.
引用
收藏
页码:292 / 304
页数:13
相关论文
共 19 条
[1]  
Alonso J.M., 1991, GROUP THEORY GEOMETR
[2]  
[Anonymous], 1987, MATH SCI RES I PUBLI
[3]  
BAUMSLAG G, 1993, B LOND MATH SOC, V25, P957
[4]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[5]  
BESTVINA M, 1994, M DEHN SEM LECT
[6]  
Bieri Robert, 1976, J. Pure Appl. Algebra, V7, p35?51, DOI DOI 10.1016/0022-4049(76)90065-7
[7]  
BRIDSON M, 1993, GEOM FUNCT ANAL, P263
[8]  
BRIDSON M, 1992, OPTIMAL ISOPERIMETRI
[9]  
David B., 1992, WORD PROCESSING GROU
[10]   Subgroups of word hyperbolic groups in dimension 2 [J].
Gersten, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :261-283