Distortion of quasiconformal mappings with identity boundary values

被引:7
作者
Vuorinen, Matti [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 90卷
关键词
REGULAR-MAPPINGS; UNIFORM DOMAINS; HOMOGENEITY; SURFACES; THEOREM; SPACE;
D O I
10.1112/jlms/jdu043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Teichmuller's classical mapping problem for plane domains concerns finding a lower bound for the maximal dilatation of a quasiconformal homeomorphism which holds the boundary pointwise fixed, maps the domain onto itself and maps a given point of the domain to another given point of the domain. For a domain D subset of R-n, n >= 2, we consider the class of all K-quasiconformal maps of D onto itself with identity boundary values and Teichmuller's problem in this context. Given a map f of this class and a point x epsilon D, we show that the maximal dilatation of f has a lower bound in terms of the distance of x and f(x). We improve recent results for the unit ball and consider this problem in other more general domains. For instance, convex domains, bounded domains and domains with uniformly perfect boundaries are studied.
引用
收藏
页码:637 / 653
页数:17
相关论文
共 36 条
[1]  
AHLFORS L. V., 1954, J ANAL MATH, V3, P1
[2]  
ANDERSON GD, 1993, PAC J MATH, V160, P1
[3]  
Anderson GD., 1979, LECT NOTES MATH, P1
[4]  
Anderson GD, 1997, CONFORMAL INVARINANT
[5]  
[Anonymous], 1983, GEOMETRY DISCRETE GR
[6]  
[Anonymous], 1971, LECT NOTES MATH
[7]  
[Anonymous], 1944, DEUT MATH
[8]  
[Anonymous], LECT NOTES MATH
[9]  
Aseev VV, 1999, SIBERIAN MATH J+, V40, P205
[10]  
BEARDON AF, 1978, J LOND MATH SOC, V18, P475