A Bifunctional-Modulated Conformal Li/Mn-Rich Layered Cathode for Fast-Charging, High Volumetric Density and Durable Li-Ion Full Cells

被引:26
作者
Zhao, Zedong [1 ]
Sun, Minqiang [1 ]
Wu, Tianqi [1 ]
Zhang, Jiajia [1 ]
Wang, Peng [1 ]
Zhang, Long [1 ]
Yang, Chongyang [3 ]
Peng, Chengxin [2 ,4 ]
Lu, Hongbin [1 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Polymers & Polymer Composi, Dept Macromol Sci, State Key Lab Mol Engn Polymers, 2005 Songhu Rd, Shanghai 200438, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[3] Shanghai Aowei Technol Dev Co Ltd, Natl Engn Res Ctr Supercapacitor Vehicles, Shanghai 201203, Peoples R China
[4] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium- and manganese-rich layered cathode; Semi-hollow microspheres; Volumetric energy density; Conformal structure; Full cell; SURFACE MODIFICATION; ENERGY-DENSITY; ELECTROCHEMICAL PERFORMANCE; CYCLING STABILITY; RESEARCH PROGRESS; RATE CAPABILITY; LITHIUM; BATTERIES; OXIDE; MN;
D O I
10.1007/s40820-021-00643-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium- and manganese-rich (LMR) layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries. However, due to the severe surface phase transformation and structure collapse, stabilizing LMR to suppress capacity fade has been a critical challenge. Here, a bifunctional strategy that integrates the advantages of surface modification and structural design is proposed to address the above issues. A model compound Li1.2Mn0.54Ni0.13Co0.13O2 (MNC) with semi-hollow microsphere structure is synthesized, of which the surface is modified by surface-treated layer and graphene/carbon nanotube dual layers. The unique structure design enabled high tap density (2.1 g cm(-3)) and bidirectional ion diffusion pathways. The dual surface coatings covalent bonded with MNC via C-O-M linkage greatly improves charge transfer efficiency and mitigates electrode degradation. Owing to the synergistic effect, the obtained MNC cathode is highly conformal with durable structure integrity, exhibiting high volumetric energy density (2234 Wh L-1) and predominant capacitive behavior. The assembled full cell, with nanographite as the anode, reveals an energy density of 526.5 Wh kg(-1), good rate performance (70.3% retention at 20 C) and long cycle life (1000 cycles). The strategy presented in this work may shed light on designing other high-performance energy devices.
引用
收藏
页数:16
相关论文
共 69 条
[51]   Size-Mediated Recurring Spinel Sub-nanodomains in Li- and Mn-Rich Layered Cathode Materials [J].
Xiao, Biwei ;
Liu, Hanshuo ;
Chen, Ning ;
Banis, Mohammad Norouzi ;
Yu, Haijun ;
Liang, Jianwen ;
Sun, Qian ;
Sham, Tsun-Kong ;
Li, Ruying ;
Cai, Mei ;
Botton, Gianluigi A. ;
Sun, Xueliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (34) :14313-14320
[52]   An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry [J].
Xiao, Zhengwei ;
Zhang, Yingjie ;
Hu, Guorong .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (03) :225-233
[53]   Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility [J].
Xiong, Pan ;
Peng, Lele ;
Chen, Dahong ;
Zhao, Yu ;
Wang, Xin ;
Yu, Guihua .
NANO ENERGY, 2015, 12 :816-823
[54]   Research Progress in Improving the Cycling Stability of HighVoltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery [J].
Xu, XiaoLong ;
Deng, SiXu ;
Wang, Hao ;
Liu, JingBing ;
Yan, Hui .
NANO-MICRO LETTERS, 2017, 9 (02)
[55]   Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J].
Yan, Pengfei ;
Zheng, Jianming ;
Gu, Meng ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Chong-Min .
NATURE COMMUNICATIONS, 2017, 8
[56]   Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials [J].
Yu, Xiqian ;
Lyu, Yingchun ;
Gu, Lin ;
Wu, Huiming ;
Bak, Seong-Min ;
Zhou, Yongning ;
Amine, Khalil ;
Ehrlich, Steven N. ;
Li, Hong ;
Nam, Kyung-Wan ;
Yang, Xiao-Qing .
ADVANCED ENERGY MATERIALS, 2014, 4 (05)
[57]   Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J].
Zhang, Jie ;
Lei, Zhihong ;
Wang, Jiulin ;
NuLi, Yanna ;
Yang, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) :15821-15829
[58]   A High-Rate V2O5 Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell [J].
Zhang, Pengfei ;
Zhao, Luzi ;
An, Qinyou ;
Wei, Qiulong ;
Zhou, Liang ;
Wei, Xiujuan ;
Sheng, Jinzhi ;
Mai, Liqiang .
SMALL, 2016, 12 (08) :1082-1090
[59]   Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD [J].
Zhang, Xiaofeng ;
Belharouak, Ilias ;
Li, Li ;
Lei, Yu ;
Elam, Jeffrey W. ;
Nie, Anmin ;
Chen, Xinqi ;
Yassar, Reza S. ;
Axelbaum, Richard L. .
ADVANCED ENERGY MATERIALS, 2013, 3 (10) :1299-1307
[60]   Enhanced Pseudo-Capacitive Contributions to High-Performance Sodium Storage in TiO2/C Nanofibers via Double Effects of Sulfur Modification [J].
Zhang, Yan ;
Huang, Yuanye ;
Srot, Vesna ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
NANO-MICRO LETTERS, 2020, 12 (01)