A Bifunctional-Modulated Conformal Li/Mn-Rich Layered Cathode for Fast-Charging, High Volumetric Density and Durable Li-Ion Full Cells

被引:26
作者
Zhao, Zedong [1 ]
Sun, Minqiang [1 ]
Wu, Tianqi [1 ]
Zhang, Jiajia [1 ]
Wang, Peng [1 ]
Zhang, Long [1 ]
Yang, Chongyang [3 ]
Peng, Chengxin [2 ,4 ]
Lu, Hongbin [1 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Polymers & Polymer Composi, Dept Macromol Sci, State Key Lab Mol Engn Polymers, 2005 Songhu Rd, Shanghai 200438, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[3] Shanghai Aowei Technol Dev Co Ltd, Natl Engn Res Ctr Supercapacitor Vehicles, Shanghai 201203, Peoples R China
[4] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium- and manganese-rich layered cathode; Semi-hollow microspheres; Volumetric energy density; Conformal structure; Full cell; SURFACE MODIFICATION; ENERGY-DENSITY; ELECTROCHEMICAL PERFORMANCE; CYCLING STABILITY; RESEARCH PROGRESS; RATE CAPABILITY; LITHIUM; BATTERIES; OXIDE; MN;
D O I
10.1007/s40820-021-00643-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium- and manganese-rich (LMR) layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries. However, due to the severe surface phase transformation and structure collapse, stabilizing LMR to suppress capacity fade has been a critical challenge. Here, a bifunctional strategy that integrates the advantages of surface modification and structural design is proposed to address the above issues. A model compound Li1.2Mn0.54Ni0.13Co0.13O2 (MNC) with semi-hollow microsphere structure is synthesized, of which the surface is modified by surface-treated layer and graphene/carbon nanotube dual layers. The unique structure design enabled high tap density (2.1 g cm(-3)) and bidirectional ion diffusion pathways. The dual surface coatings covalent bonded with MNC via C-O-M linkage greatly improves charge transfer efficiency and mitigates electrode degradation. Owing to the synergistic effect, the obtained MNC cathode is highly conformal with durable structure integrity, exhibiting high volumetric energy density (2234 Wh L-1) and predominant capacitive behavior. The assembled full cell, with nanographite as the anode, reveals an energy density of 526.5 Wh kg(-1), good rate performance (70.3% retention at 20 C) and long cycle life (1000 cycles). The strategy presented in this work may shed light on designing other high-performance energy devices.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Cr and Si Substituted-LiCo0.9Fe0.1PO4: Structure, full and half Li-ion cell performance [J].
Allen, Jan L. ;
Allen, Joshua L. ;
Thompson, Travis ;
Delp, Samuel A. ;
Wolfenstine, Jeff ;
Jow, T. Richard .
JOURNAL OF POWER SOURCES, 2016, 327 :229-234
[2]   Extremely Durable High-Rate Capability of a LiNi0.4Mn0.4Co0.2O2 Cathode Enabled with Single-Walled Carbon Nanotubes [J].
Ban, Chunmei ;
Li, Zheng ;
Wu, Zhuangchun ;
Kirkham, Melanie J. ;
Chen, Le ;
Jung, Yoon Seok ;
Payzant, E. Andrew ;
Yan, Yanfa ;
Whittingham, M. Stanley ;
Dillon, Anne C. .
ADVANCED ENERGY MATERIALS, 2011, 1 (01) :58-62
[3]   Batteries with high theoretical energy densities [J].
Cao, Wenzhuo ;
Zhang, Jienan ;
Li, Hong .
ENERGY STORAGE MATERIALS, 2020, 26 :46-55
[4]   A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode [J].
Chae, Changju ;
Noh, Hyung-Joo ;
Lee, Jung Kyoo ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3036-3042
[5]   The Origin of Capacity Fade in the Li2MnO3•LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study [J].
Chen, Chih-Jung ;
Pang, Wei Kon ;
Mori, Tatsuhiro ;
Peterson, Vanessa K. ;
Sharma, Neeraj ;
Lee, Po-Han ;
Wu, She-huang ;
Wang, Chun-Chieh ;
Song, Yen-Fang ;
Liu, Ru-Shi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) :8824-8833
[6]   The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J].
Cho, Yung-Da ;
Fey, George Ting-Kuo ;
Kao, Hsien-Ming .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :256-262
[7]   Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries [J].
Fan, Xinming ;
Hu, Guorong ;
Zhang, Bao ;
Ou, Xing ;
Zhang, Jiafeng ;
Zhao, Wengao ;
Jia, Haiping ;
Zou, Lianfeng ;
Li, Peng ;
Yang, Yong .
NANO ENERGY, 2020, 70
[8]   Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries [J].
Fu, Fang ;
Yao, Yuze ;
Wang, Haiyan ;
Xu, Gui-Liang ;
Amine, Khalil ;
Sun, Shi-Gang ;
Shao, Minhua .
NANO ENERGY, 2017, 35 :370-378
[9]   An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode [J].
Hassoun, Jusef ;
Bonaccorso, Francesco ;
Agostini, Marco ;
Angelucci, Marco ;
Betti, Maria Grazia ;
Cingolani, Roberto ;
Gemmi, Mauro ;
Mariani, Carlo ;
Panero, Stefania ;
Pellegrini, Vittorio ;
Scrosati, Bruno .
NANO LETTERS, 2014, 14 (08) :4901-4906
[10]   Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery [J].
Hong, Jihyun ;
Seo, Dong-Hwa ;
Kim, Sung-Wook ;
Gwon, Hyeokjo ;
Oh, Song-Taek ;
Kang, Kisuk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10179-10186