1.3-μm InP-based quantum-well lasers with n-doped separate confinement heterostructure layers for high-temperature operation

被引:1
作者
Seki, S [1 ]
Yokoyama, K [1 ]
机构
[1] NTT, Optoelect Labs, Kanagawa 24301, Japan
关键词
indium materials devices; quantum-well lasers; semiconductor device modeling; semiconductor lasers;
D O I
10.1109/68.655357
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel approach for reducing the light output power penalty in 1,3-mu m InP-based strained-layer (SL) MQW lasers at elevated temperatures, It is shown that n-type doping in the separate confinement heterostructure (SCH) layers increases the barrier height in the valence band profiles effectively, which makes it possible to suppress the pile-up of holes in the SCH region under high-temperature, high-injection conditions, One significant impact of this approach is that the power penalty can be reduced to one half of that in conventional SL-MQW lasers with undoped SCH. We show that SL-MQW structures with n-doped SCH have a great potential for realizing a low power penalty as well as high efficiency in InP-based MQW lasers at elevated temperatures.
引用
收藏
页码:200 / 202
页数:3
相关论文
共 24 条
[11]   High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications [J].
Klopf, F ;
Krebs, R ;
Reithmaier, JP ;
Forchel, A .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (08) :764-766
[12]   A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers [J].
Fehse, R ;
Tomic, S ;
Adams, AR ;
Sweeney, SJ ;
O'Reilly, EP ;
Andreev, A ;
Riechert, H .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) :801-810
[13]   Low-threshold current, high-efficiency 1.3-μm wavelength aluminum-free InGaAsN-based quantum-well lasers [J].
Gokhale, MR ;
Studenkov, PV ;
Wei, J ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (02) :131-133
[14]   The role of high growth temperature GaAs spacer layers in 1.3-μm In(Ga)As quantum-dot lasers [J].
Walker, CL ;
Sandall, IC ;
Smowton, PM ;
Sellers, I ;
Mowbray, DJ ;
Liu, HY ;
Hopkinson, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (10) :2011-2013
[15]   HIGH-TEMPERATURE OPERATION OF LAMBDA=1.5-MU-M TENSILE STRAINED MULTIPLE QUANTUM-WELL SIPBH LASERS [J].
THIJS, PJA ;
BINSMA, JJM ;
YOUNG, EWA ;
VANGILS, WME .
ELECTRONICS LETTERS, 1991, 27 (10) :791-793
[16]   High-performance 1.3-μm InAsP strained-layer quantum-well ACIS (Al-oxide confined inner stripe) lasers [J].
Iwai, N ;
Mukaihara, T ;
Yamanaka, N ;
Kumada, K ;
Shimizu, H ;
Kasukawa, A .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :694-700
[17]   1.3-μm AlGaInAs Multiple-Quantum-Well Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for High-Speed Direct Modulation [J].
Otsubo, Koji ;
Matsuda, Manabu ;
Takada, Kan ;
Okumura, Shigekazu ;
Ekawa, Mitsuru ;
Tanaka, Hiromasa ;
Ide, Satoshi ;
Mori, Kazuyuki ;
Yamamoto, Tsuyoshi .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (03) :687-693
[18]   Uncooled high-temperature (130 degrees C) operation of InGaAs-GaAs multiple quantum-well lasers at 20 Gb/s [J].
Czotscher, K ;
Larkins, EC ;
Weisser, S ;
Benz, W ;
Daleiden, J ;
Fleissner, J ;
Maier, M ;
Ralston, JD ;
Rosenzweig, J .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (05) :575-577
[19]   Continuous-wave operation of a 1.3-μm GaAsSb-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature [J].
Quochi, F ;
Kilper, DC ;
Cunningham, JE ;
Dinu, M ;
Shah, J .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (09) :921-923
[20]   VERY HIGH CHARACTERISTIC TEMPERATURE AND CONSTANT DIFFERENTIAL QUANTUM EFFICIENCY 1.3-MU-M GAINASP/INP STRAINED-LAYER QUANTUM-WELL LASERS BY USE OF TEMPERATURE-DEPENDENT REFLECTIVITY (TDR) MIRROR [J].
KASUKAWA, A ;
IWAI, N ;
YAMANAKA, N .
ELECTRONICS LETTERS, 1994, 30 (13) :1064-1065