Numerical ranges of reducible companion matrices

被引:9
作者
Gau, Hwa-Long [1 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 320, Taiwan
关键词
Companion matrix; Reducible matrix; Numerical range;
D O I
10.1016/j.laa.2009.10.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that a reducible companion matrix is completely determined by its numerical range, that is, if two reducible companion matrices have the same numerical range, then they must equal to each other. We also obtain a criterion for a reducible companion matrix to have an elliptic numerical range, put more precisely, we show that the numerical range of an n-by-n reducible companion matrix C is an elliptic disc if and only if C is unitarily equivalent to A circle plus B, where A epsilon Mn-2, B epsilon M-2 with sigma(B) = {a omega(1),a omega(2)}, omega(n)(1) = omega(n)(2) = 1, omega(1) not equal omega(2), and vertical bar a vertical bar >= (vertical bar omega(1) + omega(2)vertical bar + root vertical bar omega(1) + omega(2)vertical bar(2) + 4(1 + 2 cos(pi/n)))/2. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1310 / 1321
页数:12
相关论文
共 14 条
[1]  
[Anonymous], 1999, LINEAR MULTILINEAR A, DOI DOI 10.1080/03081089908818600
[2]  
[Anonymous], 1998, LINEAR MULTILINEAR A, DOI DOI 10.1080/03081089808818577
[3]   LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS .1. [J].
ATIYAH, MF ;
BOTT, R ;
GARDING, L .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :109-&
[4]  
Bhatia R., 2013, MATRIX ANAL
[5]   GEOMETRY OF THE NUMERICAL RANGE OF MATRICES [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 37 (APR) :81-96
[6]  
Gau H-L., 1998, LINEAR MULTILINEAR A, V45, P109, DOI [10.1080/03081089808818581, DOI 10.1080/03081089808818581]
[7]   Companion matrices: reducibility, numerical ranges and similarity to contractions [J].
Gau, HL ;
Pei, YW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 :127-142
[8]   Condition for the numerical range to contain an elliptic disc [J].
Gau, HL ;
Wu, PY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 364 :213-222
[9]  
Gau HL, 2003, TAIWAN J MATH, V7, P173
[10]  
Horn RA., 2013, MATRIX ANAL