Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian

被引:38
作者
Butler, Steve [1 ]
Chung, Fan [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Hamiltonian; combinatorial Laplacian; spectral graph theory; GRAPHS;
D O I
10.1007/s00026-009-0039-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the spectral and algorithmic aspects of the problem of finding a Hamiltonian cycle in a graph. We show that a sufficient condition for a graph being Hamiltonian is that the nontrivial eigenvalues of the combinatorial Laplacian are sufficiently close to the average degree of the graph. An algorithm is given for the problem of finding a Hamiltonian cycle in graphs with bounded spectral gaps which has complexity of order n (cln n) .
引用
收藏
页码:403 / 412
页数:10
相关论文
共 11 条
[1]  
Alon N., 2015, PROBABILISTIC METHOD
[2]  
Applegate D., 1998, Doc. Math., P645
[3]  
Chung FRK., 2004, Surveys in Differential Geometry, P53
[4]  
Dirac G., 1978, ANN DISCRETE MATH, V3, P75
[5]   TRAVELING-SALESMAN PROBLEM AND MINIMUM SPANNING TREES [J].
HELD, M ;
KARP, RM .
OPERATIONS RESEARCH, 1970, 18 (06) :1138-&
[6]   THE SEARCHING OVER SEPARATORS STRATEGY TO SOLVE SOME NP-HARD PROBLEMS IN SUBEXPONENTIAL TIME [J].
HWANG, RZ ;
CHANG, RC ;
LEE, RCT .
ALGORITHMICA, 1993, 9 (04) :398-423
[7]  
Karp R.M., 1972, PLENUM PRESS SURV ST, P85, DOI 10.1007/978-1-4684-2001-2_9
[8]  
Komlos J., 1975, INFINITE FINITE SETS, V10, P1003
[9]   Sparse pseudo-random graphs are Hamiltonian [J].
Krivelevich, M ;
Sudakov, B .
JOURNAL OF GRAPH THEORY, 2003, 42 (01) :17-33
[10]   HAMILTONIAN CIRCUITS IN RANDOM GRAPHS [J].
POSA, L .
DISCRETE MATHEMATICS, 1976, 14 (04) :359-364