Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance

被引:95
作者
Zhong, Bo [1 ]
Cheng, Yuanjing [1 ]
Wang, Meng [1 ]
Bai, Yongqing [2 ]
Huang, Xiaoxiao [3 ]
Yu, Yuanlie [2 ]
Wang, Huatao [1 ]
Wen, Guangwu [4 ]
机构
[1] Harbin Inst Technol Weihai, Sch Mat Sci & Engn, Weihai 264209, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Gansu, Peoples R China
[3] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[4] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanocomposites; Hexagonal boron nitride nanosheet/carbon nanotubes; Three dimensional network structures; Microwave absorption; CARBON NANOTUBES; ABSORBING MATERIALS; LIGHTWEIGHT; GRAPHENE; NANOPARTICLES; MICROSPHERES; FABRICATION; DEPOSITION; PARTICLES; NANOWIRES;
D O I
10.1016/j.compositesa.2018.07.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three dimensional hexagonal boron nitride nanosheet decorated carbon nanotube composites (3D h-BNNS/CNTs) have been fabricated through a facile thermal treatment process. h-BNNSs randomly distribute among CNTs to form 3D network structure. The microwave absorption properties of these 3D h-BNNS/CNTs are obviously improved comparing with those of CNTs. And the minimum reflection loss (RL) can reach up to -36.5 dB when the absorber thickness is 2.5 mm for 3D h-BNNS/CNTs1 derived from the precursor with boric acid, urea and CNTs molar ratio of 2:4:1. Besides, the maximum absorption bandwidth (RL <= -10 dB) is as large as 4.0 GHz when the absorber thickness drops to 2.0 mm. More important, h-BNNS/CNTs1 has a low density of 112.6 +/- 3.6 mg/cm(3), which is beneficial for practical applications. The significant enhancement in MA performance of h-BNNS/CNTs is mainly attributed to the improvement of impedance matching, interfacial polarization and multiple scattering after introduction of h-BNNSs.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 41 条
[11]   CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption [J].
Liu, Qinghe ;
Cao, Qi ;
Bi, Han ;
Liang, Chongyun ;
Yuan, Kaiping ;
She, Wen ;
Yang, Yongji ;
Che, Renchao .
ADVANCED MATERIALS, 2016, 28 (03) :486-+
[12]   Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites [J].
Liu, Zunfeng ;
Bai, Gang ;
Huang, Yi ;
Li, Feifei ;
Ma, Yanfeng ;
Guo, Tianying ;
He, Xiaobo ;
Lin, Xiao ;
Gao, Hongjun ;
Chen, Yongsheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (37) :13696-13700
[13]  
Meng F, 2017, COMPOS B, V137, P260
[14]   DESIGN OF LIGHTWEIGHT, BROAD-BAND MICROWAVE ABSORBERS USING GENETIC ALGORITHMS [J].
MICHIELSSEN, E ;
SAJER, JM ;
RANJITHAN, S ;
MITTRA, R .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (6-7) :1024-1031
[15]   Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites [J].
Nam, I. W. ;
Lee, H. K. ;
Jang, J. H. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (09) :1110-1118
[16]   Electronic structure and bonding in hexagonal boron nitride [J].
Ooi, N ;
Rairkar, A ;
Lindsley, L ;
Adams, JB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (01) :97-115
[17]   A cost effective solution for development of broadband radar absorbing material using electronic waste [J].
Panwar, Ravi ;
Agarwala, Vijaya ;
Singh, Dharmendra .
CERAMICS INTERNATIONAL, 2015, 41 (02) :2923-2930
[18]   Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition [J].
Park, KS ;
Lee, DY ;
Kim, KJ ;
Moon, DW .
APPLIED PHYSICS LETTERS, 1997, 70 (03) :315-317
[19]   Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber [J].
Qing, Yuchang ;
Zhou, Wancheng ;
Luo, Fa ;
Zhu, Dongmei .
CARBON, 2010, 48 (14) :4074-4080
[20]   Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material [J].
Qu, Bin ;
Zhu, Chunling ;
Li, Chunyan ;
Zhang, Xitian ;
Chen, Yujin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (06) :3730-3735