Epitaxial graphene for quantum resistance metrology

被引:40
作者
Kruskopf, Mattias [1 ,2 ]
Elmquist, Randolph E. [1 ]
机构
[1] NIST, Fundamental Elect Measurements, 100 Bur Dr, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
关键词
epitaxial graphene; quantum Hall effect; quantum resistance metrology; DC MEASUREMENTS; LARGE-AREA; DEVICES; MORPHOLOGY; STANDARD; IMPACT; GROWTH; SCALE; GAS; AC;
D O I
10.1088/1681-7575/aacd23
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Graphene-based quantised Hall resistance standards promise high precision for the unit ohm under less exclusive measurement conditions, enabling the use of compact measurement systems. To meet the requirements of metrological applications, national metrology institutes developed large-area monolayer graphene growth methods for uniform material properties and optimized device fabrication techniques. Precision measurements of the quantised Hall resistance showing the advantage of graphene over GaAs-based resistance standards demonstrate the remarkable achievements realized by the research community. This work provides an overview over the state-of-the-art technologies in this field.
引用
收藏
页码:R27 / R36
页数:10
相关论文
共 88 条
[1]  
Ahlers F., 2014, 29th Conference on Precision Electromagnetic Measurements (CPEM 2014), P548, DOI 10.1109/CPEM.2014.6898502
[2]  
Ahlers F J, 2016, PTB-MITT, V126, P49
[3]   Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene [J].
Alexander-Webber, J. A. ;
Huang, J. ;
Maude, D. K. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Antonov, V. ;
Yager, T. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Nicholas, R. J. .
SCIENTIFIC REPORTS, 2016, 6
[4]   Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport [J].
Andrei, Eva Y. ;
Li, Guohong ;
Du, Xu .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (05)
[5]   Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene [J].
Bae, Sang-Hoon ;
Zhou, Xiaodong ;
Kim, Seyoung ;
Lee, Yun Seog ;
Cruz, Samuel S. ;
Kim, Yunjo ;
Hannon, James B. ;
Yang, Yang ;
Sadana, Devendra K. ;
Ross, Frances M. ;
Park, Hongsik ;
Kim, Jeehwan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (16) :4082-4086
[6]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[7]  
Bergsten Tobias, 2016, 2016 Conference on Precision Electromagnetic Measurements (CPEM), P1, DOI 10.1109/CPEM.2016.7540514
[8]   Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene [J].
Chu, Tao ;
Chen, Zhihong .
ACS NANO, 2014, 8 (04) :3584-3589
[9]   Chemical-doping-driven crossover from graphene to "ordinary metal" in epitaxial graphene grown on SiC [J].
Chuang, Chiashain ;
Yang, Yanfei ;
Pookpanratana, Sujitra ;
Hacker, Christina A. ;
Liang, Chi-Te ;
Elmquist, Randolph E. .
NANOSCALE, 2017, 9 (32) :11537-11544
[10]   Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices [J].
Couto, Nuno J. G. ;
Costanzo, Davide ;
Engels, Stephan ;
Ki, Dong-Keun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Stampfer, Christoph ;
Guinea, Francisco ;
Morpurgo, Alberto F. .
PHYSICAL REVIEW X, 2014, 4 (04)