Interaction of micrometer-scale particles with nanotextured surfaces in shear flow

被引:86
作者
Duffadar, Ranojoy D. [1 ]
Davis, Jeffrey M. [1 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
particle deposition; charge heterogeneity; nanotextured surface; colloidal interaction; DLVO; electrostatic double layer; sphere-flat plate; Derjaguin approximation; patchy surface; patch model;
D O I
10.1016/j.jcis.2006.12.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic particle adhesion from flow over collecting surfaces with nanoscale heterogeneity occurs in important natural systems and current technologies. Accurate modeling and prediction of the dynamics of particles interacting with such surfaces will facilitate their use in applications for sensing, separating, and sorting colloidal-scale objects. In this paper, the interaction of micrometer-scale particles with electrostatically heterogeneous surfaces is analyzed. The deposited polymeric patches that provide the charge heterogeneity in experiments are modeled as 11-nm disks randomly distributed on a planar surface. A novel technique based on surface discretization is introduced to facilitate computation of the colloidal interactions between a particle and the heterogeneous surface based on expressions for parallel plates. Combining these interactions with hydrodynamic forces and torques on a particle in a low Reynolds number shear flow allows particle dynamics to be computed for varying net surface coverage. Spatial fluctuations in the local surface density of the deposited patches are shown responsible for the dynamic adhesion phenomena observed experimentally, including particle capture on a net-repulsive surface. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 54 条
[1]   LIFETIME OF THE P-SELECTIN-CARBOHYDRATE BOND AND ITS RESPONSE TO TENSILE FORCE IN HYDRODYNAMIC FLOW [J].
ALON, R ;
HAMMER, DA ;
SPRINGER, TA .
NATURE, 1995, 374 (6522) :539-542
[2]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[3]   Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate [J].
Bhattacharjee, S ;
Elimelech, M .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 193 (02) :273-285
[4]   DLVO interaction energy between spheroidal particles and a fiat surface [J].
Bhattacharjee, S ;
Chen, JY ;
Elimelech, M .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 165 (1-3) :143-156
[5]   PHYSICS OF CELL-ADHESION [J].
BONGRAND, P ;
CAPO, C ;
DEPIEDS, R .
PROGRESS IN SURFACE SCIENCE, 1982, 12 (03) :217-285
[6]   THE STOKES RESISTANCE OF AN ARBITRARY PARTICLE .2. AN EXTENSION [J].
BRENNER, H .
CHEMICAL ENGINEERING SCIENCE, 1964, 19 (09) :599-629
[7]   Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands [J].
Brunk, DK ;
Hammer, DA .
BIOPHYSICAL JOURNAL, 1997, 72 (06) :2820-2833
[8]   Sialyl Lewis(x)/E-selectin-mediate rolling in a cell-free system [J].
Brunk, DK ;
Goetz, DJ ;
Hammer, DA .
BIOPHYSICAL JOURNAL, 1996, 71 (05) :2902-2907
[9]   ELECTRICAL DOUBLE-LAYER INTERACTION BETWEEN DISSIMILAR SPHERICAL COLLOIDAL PARTICLES AND BETWEEN A SPHERE AND A PLATE - THE LINEARIZED POISSON-BOLTZMANN THEORY [J].
CARNIE, SL ;
CHAN, DYC ;
GUNNING, JS .
LANGMUIR, 1994, 10 (09) :2993-3009
[10]   Influence of direction and type of applied force on the detachment of macromolecularly-bound particles from surfaces [J].
Chang, KC ;
Hammer, DA .
LANGMUIR, 1996, 12 (09) :2271-2282