Catalytic Branching Processes via Spine Techniques and Renewal Theory

被引:8
作者
Doering, Leif [1 ]
Roberts, Matthew I. [2 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75005 Paris, France
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
来源
SEMINAIRE DE PROBABILITES XLV | 2013年 / 2078卷
关键词
RANDOM-WALK; ASYMPTOTICS;
D O I
10.1007/978-3-319-00321-4_12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we contribute to the moment analysis of branching processes in catalytic media. The many-to-few lemma based on the spine technique is used to derive a system of (discrete space) partial differential equations for the number of particles in a variation of constants formulation. The long-time behaviour is then deduced from renewal theorems and induction.
引用
收藏
页码:305 / 322
页数:18
相关论文
共 20 条
[1]   Asymptotics of branching symmetric random walk on the lattice with a single source (vol 326, pg 975, 1998) [J].
Albeverio, S ;
Bogachev, LV ;
Yarovaya, EB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06) :585-585
[2]   Asymptotics of branching symmetric random walk on the lattice with a single source [J].
Albeverio, S ;
Bogachev, LV ;
Yarovaya, EB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (08) :975-980
[3]   Branching random walk in a catalytic medium. I. Basic equations [J].
Albeverio, S ;
Bogachev, LV .
POSITIVITY, 2000, 4 (01) :41-100
[4]   A RENEWAL THEOREM IN THE INFINITE-MEAN CASE [J].
ANDERSON, KK ;
ATHREYA, KB .
ANNALS OF PROBABILITY, 1987, 15 (01) :388-393
[5]  
[Anonymous], DISCRETE MATH THEOR
[6]  
[Anonymous], 1997, CLASSICAL MODERN BRA
[7]  
Bulinskaya E. Vl., 2010, THEORY STOCH PROCESS, V16, P23
[8]   LIMIT DISTRIBUTIONS ARISING IN BRANCHING RANDOM WALKS ON INTEGER LATTICES [J].
Bulinskaya, Ekaterina Vl. .
LITHUANIAN MATHEMATICAL JOURNAL, 2011, 51 (03) :310-321
[9]   AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES [J].
Doering, Leif ;
Savov, Mladen .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 :263-269
[10]   STRONG LAW OF LARGE NUMBERS WHEN MEAN IS UNDEFINED [J].
ERICKSON, KB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 185 (458) :371-381