Empowering Reinforcement Learning on Big Sensed Data for Intrusion Detection

被引:0
|
作者
Otoum, Safa [1 ]
Kantarci, Burak [1 ]
Mouftah, Hussein [1 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
来源
ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) | 2019年
基金
加拿大自然科学与工程研究理事会;
关键词
Big data; intrusion detection; wireless sensor networks; reinforcement learning; machine learning; Q-learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless sensor and actuator networks are widely adopted in various applications such as critical infrastructure monitoring where sensory data in big volumes and velocity are prone to security vulnerabilities for the network and the monitored infrastructure. Despite the vulnerabilities of the big data phenomenon, intelligent data analytics technique can enable the analysis of huge amount of data and identification of intrusive behavior in real time. The main performance targets for any Intrusion Detection System (IDS) involve accuracy, detection, precision, F-1 score and Receiver Operating Characteristics. Pursuant to these, this paper proposes a big data-driven IDS approach in Wireless Sensor Networks by harnessing reinforcement learning techniques on a hybrid IDS framework. We study the performance of RL-IDS and compare it to the previously proposed Adaptive Machine Learning-based IDS (AML-IDS) namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS). The experimental results show that RL-IDS can achieve approximate to 100% success in detection, accuracy and precision- recall rates whereas its predecessor ASCH-IDS performs with an accuracy level that is slightly above 99%.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Intrusion Detection Using Big Data and Deep Learning Techniques
    Faker, Osama
    Dogdu, Erdogan
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 86 - 93
  • [2] Big-IDS: a decentralized multi agent reinforcement learning approach for distributed intrusion detection in big data networks
    Louati, Faten
    Ktata, Farah Barika
    Amous, Ikram
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6823 - 6841
  • [3] A Distributed Intelligent Intrusion Detection System based on Parallel Machine Learning and Big Data Analysis
    Louati, Faten
    Ktata, Farah Barika
    Ben Amor, Ikram Amous
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON SENSOR NETWORKS (SENSORNETS), 2021, : 152 - 157
  • [4] Feature Selection with Deep Reinforcement Learning for Intrusion Detection System
    Priya S.
    Pradeep Mohan Kumar K.
    Computer Systems Science and Engineering, 2023, 46 (03): : 3339 - 3353
  • [5] A hybrid deep learning model for efficient intrusion detection in big data environment
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Alsanad, Ahmed
    Alrubaian, Majed
    Fortino, Giancarlo
    INFORMATION SCIENCES, 2020, 513 : 386 - 396
  • [6] Intrusion detection model using machine learning algorithm on Big Data environment
    Othman, Suad Mohammed
    Ba-Alwi, Fadl Mutaher
    Alsohybe, Nabeel T.
    Al-Hashida, Amal Y.
    JOURNAL OF BIG DATA, 2018, 5 (01)
  • [7] Intrusion detection based on ensemble learning for big data classification
    Jemili, Farah
    Meddeb, Rahma
    Korbaa, Ouajdi
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3771 - 3798
  • [8] Intrusion detection and Big Heterogeneous Data: a Survey
    Zuech R.
    Khoshgoftaar T.M.
    Wald R.
    J. Big Data, 1 (1):
  • [9] Big data technology for computer intrusion detection
    Chen, Ying
    OPEN COMPUTER SCIENCE, 2023, 13 (01)
  • [10] Big Data Analytic for Intrusion Detection System
    Britel, Merieme
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, CONTROL, OPTIMIZATION AND COMPUTER SCIENCE (ICECOCS), 2018,