Projection methods preserving Lyapunov functions

被引:23
作者
Calvo, M. [2 ]
Laburta, M. P. [1 ]
Montijano, J. I. [2 ]
Randez, L. [2 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, IUMA, Ctr Politecn Super, Zaragoza 50018, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Matemat Aplicada, IUMA, E-50009 Zaragoza, Spain
关键词
Initial value problems; Lyapunov function; Numerical geometric integration; Projection methods; Explicit Runge-Kutta methods; RUNGE-KUTTA METHODS; FORMULAS;
D O I
10.1007/s10543-010-0259-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we consider ordinary differential equations with a known Lyapunov function. We study the use of Runge-Kutta methods provided with a dense output and a projection technique to preserve any given Lyapunov function. This approach extends previous work of Grimm and Quispel (BIT 45, 2005), allowing the use of Runge-Kutta methods for which the associated quadrature formula does not need to have positive or zero coefficients. Some numerical experiments show the good performance of the proposed technique.
引用
收藏
页码:223 / 241
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 1994, APPL MATH MATH COMPU
[2]  
[Anonymous], 1996, Dynamical systems and numerical analysis
[3]  
[Anonymous], 1977, APPL MATH SCI
[4]  
Bogacki P, 1989, APPL MATH LETT, V2, P321
[5]  
Budd C.J., 2000, P ECMWF WORKSHOP DEV, P93
[6]  
BUDD CJ, 1999, PHILOS T R SOC LOND, V357
[7]   On the preservation of invariants by explicit Runge-Kutta methods [J].
Calvo, M. ;
Hernandez-Abreu, D. ;
Montijano, J. I. ;
Randez, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) :868-885
[8]   A NEW EMBEDDED PAIR OF RUNGE-KUTTA FORMULAS OF ORDER-5 AND ORDER-6 [J].
CALVO, M ;
MONTIJANO, JI ;
RANDEZ, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (01) :15-24
[9]  
Dormand J.R., 1980, Journal of computational and applied mathematics, V6, P19, DOI DOI 10.1016/0771-050X
[10]   THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS [J].
ELLIOTT, CM ;
STUART, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1622-1663