Strength loss of carbon nanotube fibers explained in a three-level hierarchical model

被引:70
作者
Gao, Enlai [1 ,2 ]
Lu, Weibang [3 ,4 ]
Xu, Zhiping [1 ,2 ,5 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Div Adv Mat, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Innovat Ctr Adv Nanocomposites, Suzhou 215123, Peoples R China
[5] Southwest Jiaotong Univ, Sch Mech & Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 611756, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
SHEAR-LAG MODEL; MECHANICAL-PROPERTIES; ELECTRICAL-CONDUCTIVITY; MACROSCOPIC FIBERS; TENSILE-STRENGTH; POINT-DEFECTS; LOAD-TRANSFER; YARNS; SPUN; PERFORMANCE;
D O I
10.1016/j.carbon.2018.05.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although the tensile strength of carbon nanotubes inherited from the sp(2) hexagonal carbon lattice is as high as 120 GPa, the state-of-the-art mechanical resistance of carbon nanotube fibers is below 10 GPa. Material imperfections embedded in the complex microstructures are responsible for this remarkable reduction across multiple length scales. In this study, we rationalize this multi-scale degradation of mechanical performance through theoretical analysis of the processing-microstructure-performance relationship for carbon nanotube fibers based on the experiment data, offering a simplified model that not only quantifies the breakdown of material strength at the nanotube, bundle, and fiber levels, respectively, but also provides practical advices to optimize the manufacturing processes for elevated mechanical performance. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 97 条
[51]   High performance fibres from 'Dog bone' carbon nanotubes [J].
Motta, Marcelo ;
Moisala, Anna ;
Kinloch, Ian A. ;
Windle, Alan H. .
ADVANCED MATERIALS, 2007, 19 (21) :3721-+
[52]   Fluorination of double-walled carbon nanotubes [J].
Muramatsu, H ;
Kim, YA ;
Hayashi, T ;
Endo, M ;
Yonemoto, A ;
Arikai, H ;
Okino, F ;
Touhara, H .
CHEMICAL COMMUNICATIONS, 2005, (15) :2002-2004
[53]   Synthesis, Nanoprocessing, and Yarn Application of Carbon Nanotubes [J].
Nakayama, Yoshikazu .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (10) :8149-8156
[54]   Processing, structure, and properties of carbon fibers [J].
Newcomb, Bradley A. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 91 :262-282
[55]   Atomically resolved single-walled carbon nanotube intramolecular junctions [J].
Ouyang, M ;
Huang, JL ;
Cheung, CL ;
Lieber, CM .
SCIENCE, 2001, 291 (5501) :97-100
[56]   Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements [J].
Peng, Bei ;
Locascio, Mark ;
Zapol, Peter ;
Li, Shuyou ;
Mielke, Steven L. ;
Schatz, George C. ;
Espinosa, Horacio D. .
NATURE NANOTECHNOLOGY, 2008, 3 (10) :626-631
[57]   Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J].
Randeniya, Lakshman K. ;
Bendavid, Avi ;
Martin, Philip J. ;
Tran, Canh-Dung .
SMALL, 2010, 6 (16) :1806-1811
[58]   A DAMAGE MECHANICS MODEL FOR TWISTED CARBON NANOTUBE FIBERS [J].
Rong, Qingqing ;
Wang, Jianshan ;
Kang, Yilan ;
Li, Yali ;
Qin, Qing-Hua .
ACTA MECHANICA SOLIDA SINICA, 2012, 25 (04) :342-347
[59]   Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements [J].
Ruoff, RS ;
Qian, D ;
Liu, WK .
COMPTES RENDUS PHYSIQUE, 2003, 4 (09) :993-1008
[60]   High-Strength Carbon Nanotube Fibers Fabricated by Infiltration and Curing of Mussel-Inspired Catecholamine Polymer [J].
Ryu, Seongwoo ;
Lee, Yuhan ;
Hwang, Joe-Won ;
Hong, Seonki ;
Kim, Chunsoo ;
Park, Tae Gwan ;
Lee, Haeshin ;
Hong, Soon Hyung .
ADVANCED MATERIALS, 2011, 23 (17) :1971-1975