Strength loss of carbon nanotube fibers explained in a three-level hierarchical model

被引:70
作者
Gao, Enlai [1 ,2 ]
Lu, Weibang [3 ,4 ]
Xu, Zhiping [1 ,2 ,5 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Div Adv Mat, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Innovat Ctr Adv Nanocomposites, Suzhou 215123, Peoples R China
[5] Southwest Jiaotong Univ, Sch Mech & Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 611756, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
SHEAR-LAG MODEL; MECHANICAL-PROPERTIES; ELECTRICAL-CONDUCTIVITY; MACROSCOPIC FIBERS; TENSILE-STRENGTH; POINT-DEFECTS; LOAD-TRANSFER; YARNS; SPUN; PERFORMANCE;
D O I
10.1016/j.carbon.2018.05.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although the tensile strength of carbon nanotubes inherited from the sp(2) hexagonal carbon lattice is as high as 120 GPa, the state-of-the-art mechanical resistance of carbon nanotube fibers is below 10 GPa. Material imperfections embedded in the complex microstructures are responsible for this remarkable reduction across multiple length scales. In this study, we rationalize this multi-scale degradation of mechanical performance through theoretical analysis of the processing-microstructure-performance relationship for carbon nanotube fibers based on the experiment data, offering a simplified model that not only quantifies the breakdown of material strength at the nanotube, bundle, and fiber levels, respectively, but also provides practical advices to optimize the manufacturing processes for elevated mechanical performance. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 97 条
[11]   Multifunctional macroarchitectures of double-walled carbon nanotube fibers [J].
Ci, Lijie ;
Punbusayakul, Niramol ;
Wei, Jinquan ;
Vajtai, Robert ;
Talapatra, Saikat ;
Ajayan, Pulickel M. .
ADVANCED MATERIALS, 2007, 19 (13) :1719-+
[12]  
Collins P.G., 2010, Oxford Handbook of Nanoscience and Technology: Volume 2: Materials: Structures, Properties and Characterization Techniques, V2, P31
[13]   Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction [J].
Colomer, JF ;
Henrard, L ;
Van Tendeloo, G ;
Lucas, A ;
Lambin, P .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) :603-606
[14]   A single degree of freedom 'lollipop' model for carbon nanotube bundle formation [J].
Cranford, Steven ;
Yao, Haimin ;
Ortiz, Christine ;
Buehler, Markus J. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (03) :409-427
[15]  
Daniels H. E., 1945, INT P R SOC LOND A, V183
[16]   Multi-Scale Experiments and Interfacial Mechanical Modeling of Carbon Nanotube Fiber [J].
Deng, W. -L. ;
Qiu, W. ;
Li, Q. ;
Kang, Y. -L. ;
Guo, J. -G. ;
Li, Y. -L. ;
Han, S. -S. .
EXPERIMENTAL MECHANICS, 2014, 54 (01) :3-10
[17]   Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes [J].
Ding, W. ;
Calabri, L. ;
Kohlhaas, K. M. ;
Chen, X. ;
Dikin, D. A. ;
Ruoff, R. S. .
EXPERIMENTAL MECHANICS, 2007, 47 (01) :25-36
[18]   Design and deployment of a space elevator [J].
Edwards, BC .
ACTA ASTRONAUTICA, 2000, 47 (10) :735-744
[19]   Macroscopic, neat, single-walled carbon nanotube fibers [J].
Ericson, LM ;
Fan, H ;
Peng, HQ ;
Davis, VA ;
Zhou, W ;
Sulpizio, J ;
Wang, YH ;
Booker, R ;
Vavro, J ;
Guthy, C ;
Parra-Vasquez, ANG ;
Kim, MJ ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Lavin, G ;
Schmidt, H ;
Adams, WW ;
Billups, WE ;
Pasquali, M ;
Hwang, WF ;
Hauge, RH ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 2004, 305 (5689) :1447-1450
[20]  
Fan YW, 2002, ADV MATER, V14, P130, DOI 10.1002/1521-4095(20020116)14:2<130::AID-ADMA130>3.0.CO