Modification of the Gerchberg-Saxton algorithm for the generation of specle-reduced intensity distributions of micrometer and submicrometer dimensions

被引:6
作者
Porfirev, A. P. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Samara, Russia
[2] RAS, Image Proc Syst Inst, Samara, Russia
来源
OPTIK | 2019年 / 195卷
基金
俄罗斯科学基金会;
关键词
Gerchberg-Saxton algorithm; Intensity distribution; Diffractive optical element; Richards-Wolf equation; Zero-Padding; BEAM; PHASE; DIFFRACTION; MICROSCOPY; IMAGE;
D O I
10.1016/j.ijleo.2019.163163
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Gerchberg-Saxton (GS) algorithm is a popular method for the design of diffractive optical elements (DOEs) that can generate predefined complex light distributions. Nowadays, this algorithm is widely used in holography, optical tweezers, and laser nanopatterning. However, the conventional version of the GS algorithm and its various modifications proposed to date have some limitations related to the presence of speckle patterns in the structure of the generated intensity distributions. We present a new modification of the GS algorithm, which allows one to design pure-phase transmission functions of DOEs that generate highly efficient ( > 60%) and highly uniform ( > 70%) speckle-reduced intensity distributions of micrometer and submicrometer dimensions. The proposed modification is based on a zero-padding operation that allows one to decrease the sampling interval for a target image defined as the desired intensity distribution. DOEs designed in such a way can be used for laser micromachining and the fabrication of structured nano- and micropatterns for modern applications of nanophotonics.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] BEAM TRANSFORMATIONS AND NONTRANSFORMED BEAMS
    ABRAMOCHKIN, E
    VOLOSTNIKOV, V
    [J]. OPTICS COMMUNICATIONS, 1991, 83 (1-2) : 123 - 135
  • [2] Formation of vortex light fields of specified intensity for laser micromanipulation
    E. G. Abramochkin
    K. N. Afanasiev
    V. G. Volostnikov
    A. V. Korobtsov
    S. P. Kotova
    N. N. Losevsky
    A. M. Mayorova
    E. V. Razueva
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72 (1) : 68 - 70
  • [3] Spiral light beams
    Abramochkin, EG
    Volostnikov, VG
    [J]. PHYSICS-USPEKHI, 2004, 47 (12) : 1177 - 1203
  • [4] Review of structured light in diffuse optical imaging
    Angelo, Joseph P.
    Chen, Sez-Jade
    Ochoa, Marien
    Sunar, Ulas
    Gioux, Sylvain
    Intes, Xavier
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (07)
  • [5] Optical trapping and binding
    Bowman, Richard W.
    Padgett, Miles J.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (02)
  • [6] Plasmon excitation of gold split-ring array: spectral studies and numerical simulation
    Busleev, N., I
    Kudryashov, S., I
    Danilov, P. A.
    Porfirev, A. P.
    Saraeva, I. N.
    Rudenko, A. A.
    Umanskaya, S. F.
    Kuchmizhak, A. A.
    Zayarny, D. A.
    Ionin, A. A.
    Khonina, S. N.
    [J]. LASER PHYSICS LETTERS, 2019, 16 (06)
  • [7] Holographic optical tweezers obtained by using the three-dimensional Gerchberg-Saxton algorithm
    Chen, Hao
    Guo, Yunfeng
    Chen, Zhaozhong
    Hao, Jingjing
    Xu, Ji
    Wang, Hui-Tian
    Ding, Jianping
    [J]. JOURNAL OF OPTICS, 2013, 15 (03)
  • [8] Dholakia K, 2011, NAT PHOTONICS, V5, P335, DOI [10.1038/NPHOTON.2011.80, 10.1038/nphoton.2011.80]
  • [9] Fahrbach FO, 2010, NAT PHOTONICS, V4, P780, DOI [10.1038/nphoton.2010.204, 10.1038/NPHOTON.2010.204]
  • [10] Structured-light 3D surface imaging: a tutorial
    Geng, Jason
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02): : 128 - 160