Regression DCM for fMRI

被引:109
作者
Frassle, Stefan [1 ,2 ]
Lomakina, Ekaterina I. [1 ,2 ,3 ]
Razi, Adeel [4 ,5 ]
Friston, Karl J. [4 ]
Buhmann, Joachim M. [3 ]
Stephan, Klaas E. [1 ,2 ,4 ]
机构
[1] Univ Zurich, Inst Biomed Engn, TNU, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Dept Comp Sci, CH-8032 Zurich, Switzerland
[4] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[5] NED Univ Engn & Technol, Dept Elect Engn, Karachi, Pakistan
关键词
Bayesian regression; Dynamic causal modeling; Variational Bayes; Generative model; Effective connectivity; Connectomics; STATE FUNCTIONAL CONNECTIVITY; BAYESIAN MODEL SELECTION; HEMISPHERIC LATERALIZATION; CONNECTOME PROMISE; GRANGER CAUSALITY; BRAIN; CORTEX; SCHIZOPHRENIA; PARCELLATION; MECHANISMS;
D O I
10.1016/j.neuroimage.2017.02.090
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The development of large-scale network models that infer the effective (directed) connectivity among neuronal populations from neuroimaging data represents a key challenge for computational neuroscience. Dynamic causal models (DCMs) of neuroimaging and electrophysiological data are frequently used for inferring effective connectivity but are presently restricted to small graphs (typically up to 10 regions) in order to keep model inversion computationally feasible. Here, we present a novel variant of DCM for functional magnetic resonance imaging (fMRI) data that is suited to assess effective connectivity in large (whole-brain) networks. The approach rests on translating a linear DCM into the frequency domain and reformulating it as a special case of Bayesian linear regression. This paper derives regression DCM (rDCM) in detail and presents a variational Bayesian inversion method that enables extremely fast inference and accelerates model inversion by several orders of magnitude compared to classical DCM. Using both simulated and empirical data, we demonstrate the face validity of rDCM under different settings of signal-to-noise ratio (SNR) and repetition time (TR) of fMRI data. In particular, we assess the potential utility of rDCM as a tool for whole-brain connectomics by challenging it to infer effective connection strengths in a simulated whole-brain network comprising 66 regions and 300 free parameters. Our results indicate that rDCM represents a computationally highly efficient approach with promising potential for inferring whole-brain connectivity from individual fMRI data.
引用
收藏
页码:406 / 421
页数:16
相关论文
共 94 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 1977, DISCRETE TIME SIGNAL
[4]  
[Anonymous], 2006, PATTERN RECOGN
[5]   Early-Course Unmedicated Schizophrenia Patients Exhibit Elevated Prefrontal Connectivity Associated with Longitudinal Change [J].
Anticevic, Alan ;
Hu, Xinyu ;
Xiao, Yuan ;
Hu, Junmei ;
Li, Fei ;
Bi, Feng ;
Cole, Michael W. ;
Savic, Aleksandar ;
Yang, Genevieve J. ;
Repovs, Grega ;
Murray, John D. ;
Wang, Xiao-Jing ;
Huang, Xiaoqi ;
Lui, Su ;
Krystal, John H. ;
Gong, Qiyong .
JOURNAL OF NEUROSCIENCE, 2015, 35 (01) :267-286
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]  
Bracewell R. N., 1986, The Fourier Transform and its Applications
[8]   Dissecting psychiatric spectrum disorders by generative embedding [J].
Brodersen, Kay H. ;
Deserno, Lorenz ;
Schlagenhauf, Florian ;
Lin, Zhihao ;
Penny, Will D. ;
Buhmann, Joachim M. ;
Stephan, Klaas E. .
NEUROIMAGE-CLINICAL, 2014, 4 :98-111
[9]   Generative Embedding for Model-Based Classification of fMRI Data [J].
Brodersen, Kay H. ;
Schofield, Thomas M. ;
Leff, Alexander P. ;
Ong, Cheng Soon ;
Lomakina, Ekaterina I. ;
Buhmann, Joachim M. ;
Stephan, Klaas E. .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (06)
[10]   Opportunities and limitations of intrinsic functional connectivity MRI [J].
Buckner, Randy L. ;
Krienen, Fenna M. ;
Yeo, B. T. Thomas .
NATURE NEUROSCIENCE, 2013, 16 (07) :832-837