Estimation of human metabolic age using regression and neural network analysis

被引:0
作者
Korkushko, O., V [1 ,2 ,3 ,4 ]
Pysaruk, A., V [5 ]
Chyzhova, V. P. [4 ]
机构
[1] NAMS Ukraine, Kiev, Ukraine
[2] NAS Ukraine, Kiev, Ukraine
[3] RAS, Kiev, Ukraine
[4] NAMS Ukraine, State Inst DF Chebotarev Inst Gerontol, Dept Clin Physiol & Pathol Internal Organs, Kiev, Ukraine
[5] NAMS Ukraine, State Inst DF Chebotarev Inst Gerontol, Lab Math Modeling Aging Proc, Kiev, Ukraine
关键词
metabolism; biomarkers; aging; neural network;
D O I
10.14739/2310-1210.2021.1.224883
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The aim is to develop the methods for assessing the rate of human aging by metabolic parameters (metabolic age). Materials and methods. The study examined 120 subjects aged 40-80 years. All the people included in the study underwent the determination of plasma glucose concentration, lipid profile - total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein, very low-density lipoprotein cholesterol and creatinine as well as the standard glucose tolerance test. Validation of the panel of indicators was carried out using regression and neural network analysis. Results. According to the study results, the standard error in determining the metabolic age using the multiple regression equation was 9.31 years, and using the neural network - 3.18 years. Conclusions. The methods that we have developed for assessing the rate of metabolic aging showed sufficient (regression analysis) and high (neural network analysis) accuracy and can be used to assess the risk of metabolic syndrome, cardiovascular disease, and type II diabetes. The implementation of the proposed methods would not only identify people at risk for pathology, but also assess the effectiveness of treatment, prevention and rehabilitation measures.
引用
收藏
页码:60 / 64
页数:5
相关论文
共 12 条
  • [1] Quantification of biological aging in young adults
    Belsky, Daniel W.
    Caspi, Avshalom
    Houts, Renate
    Cohen, Harvey J.
    Corcoran, David L.
    Danese, Andrea
    Harrington, HonaLee
    Israel, Salomon
    Levine, Morgan E.
    Schaefer, Jonathan D.
    Sugden, Karen
    Williams, Ben
    Yashin, Anatoli I.
    Poulton, Richie
    Moffitt, Terrie E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (30) : E4104 - E4110
  • [2] MARK-AGE biomarkers of ageing
    Buerkle, Alexander
    Moreno-Villanueva, Maria
    Bernhard, Juergen
    Blasco, Maria
    Zondag, Gerben
    Hoeijmakers, Jan H. J.
    Toussaint, Olivier
    Grubeck-Loebenstein, Beatrix
    Mocchegiani, Eugenio
    Collino, Sebastiano
    Gonos, Efstathios S.
    Sikora, Ewa
    Gradinaru, Daniela
    Dolle, Martijn
    Salmon, Michel
    Kristensen, Peter
    Griffiths, Helen R.
    Libert, Claude
    Grune, Tilman
    Breusing, Nicolle
    Simm, Andreas
    Franceschi, Claudio
    Capri, Miriam
    Talbot, Duncan
    Caiafa, Paola
    Friguet, Bertrand
    Slagboom, P. Eline
    Hervonen, Antti
    Hurme, Mikko
    Aspinall, Richard
    [J]. MECHANISMS OF AGEING AND DEVELOPMENT, 2015, 151 : 2 - 12
  • [3] Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases
    Cardoso, Ana Luisa
    Fernandes, Adelaide
    Aguilar-Pimentel, Juan Antonio
    de Angelis, Martin Hrabe
    Guedes, Joana Ribeiro
    Brito, Maria Alexandra
    Ortolano, Saida
    Pani, Giovambattista
    Athanasopoulou, Sophia
    Gonos, Efstathios S.
    Schosserer, Markus
    Grillari, Johannes
    Peterson, Part
    Tuna, Bilge Guvenc
    Dogan, Soner
    Meyer, Angelika
    van Os, Ronald
    Trendelenburg, Anne-Ulrike
    [J]. AGEING RESEARCH REVIEWS, 2018, 47 : 214 - 277
  • [4] Cevenini E, 2008, EXPERT OPIN BIOL TH, V8, P1393, DOI [10.1517/14712598.8.9.1393, 10.1517/14712598.8.9.1393 ]
  • [5] Accelerated Aging Influences Cardiovascular Disease Risk in Rheumatoid Arthritis
    Crowson, Cynthia S.
    Therneau, Terry M.
    Davis, John M., III
    Roger, Veronique L.
    Matteson, Eric L.
    Gabriel, Sherine E.
    [J]. ARTHRITIS AND RHEUMATISM, 2013, 65 (10): : 2562 - 2566
  • [6] Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project
    Felix Caballero, Francisco
    Soulis, George
    Engchuan, Worrawat
    Sanchez-Niubo, Albert
    Arndt, Holger
    Luis Ayuso-Mateos, Jose
    Maria Haro, Josep
    Chatterji, Somnath
    Panagiotakos, Demosthenes B.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Korkushko O.V., 2009, BUKOVIN MED VISN, V13, P153
  • [8] Krut'ko V N, 2014, Aviakosm Ekolog Med, V48, P12
  • [9] MARK-AGE standard operating procedures (SOPs): A successful effort
    Moreno-Villanueva, Maria
    Capri, Miriam
    Breusing, Nicolle
    Siepelmeyer, Anne
    Sevini, Federica
    Ghezzo, Alessandro
    de Craen, Anton J. M.
    Hervonen, Antti
    Hurme, Mikko
    Schoen, Christiane
    Grune, Tilman
    Franceschi, Claudio
    Buerkle, Alexander
    [J]. MECHANISMS OF AGEING AND DEVELOPMENT, 2015, 151 : 18 - 25
  • [10] Aging and measures of processing speed
    Salthouse, TA
    [J]. BIOLOGICAL PSYCHOLOGY, 2000, 54 (1-3) : 35 - 54