Long-range dependence of stationary processes in single-server queues

被引:3
作者
Carpio, K. J. E. [1 ]
机构
[1] De La Salle Univ, Manila, Philippines
关键词
waiting times; queue sizes; long-range dependence; Hurst index; moment index;
D O I
10.1007/s11134-006-9008-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The stationary processes of waiting times 1 Introduction {W(n)}(n=1,2,...) in a GI/G1 queue and queue sizes at successive departure epochs {Q(n)}(n=1,2,...) in an M/G/1 queue are long-range dependent when 3 < kappa(S) < 4, where kappa(S) is the moment index of the independent identically distributed (i.i.d.) sequence of service times. When the tail of the service time is regularly varying at infinity the stationary long-range dependent process {W(n)} has Hurst index 1/1(5 - kappa(S)), i.e. sup{h: lim sup/n ->infinity var(W(1)+center dot center dot center dot+W(n)/n(2h) = infinity} = 5-kappa(s)/2. If this assumption does not hold but the sequence of serial correlation coefficients {p(n)} of the stationary process {W(n)} behaves asymptotically as cn(-alpha) for some finite positive c and alpha epsilon (0,1), where alpha = kappa(S) - 3, then {W(n)} has Hurst index 1/2(5 - kappa(S)). If this condition also holds for the sequence of serial correlation coefficients {r(n)} of the stationary process {Q(n)} then it also has Hurst index 1/2(5 - kappa(S)).
引用
收藏
页码:123 / 130
页数:8
相关论文
共 16 条
[1]   Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times [J].
Baltrunas, A ;
Daley, DJ ;
Klüppelberg, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :237-258
[2]  
Beran J., 1994, STAT LONG MEMORY PRO, Vvol 61
[3]  
Bingham NH., 1989, REGULAR VARIATION
[4]  
Carpio K.J.E., 2006, THESIS AUSTR NATL U
[5]   SOME RESULTS ON REGULAR VARIATION FOR DISTRIBUTIONS IN QUEUING AND FLUCTUATION THEORY [J].
COHEN, JW .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (02) :343-353
[6]  
Daley D. J., 1968, Journal of the Australian Mathematical Society, V8, P683, DOI [https://doi.org/10.1017/S1446788700006509, DOI 10.1017/S1446788700006509]
[7]   STOCHASTICALLY MONOTONE MARKOV CHAINS [J].
DALEY, DJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 10 (04) :305-&
[8]   Long range dependence of point processes, with queueing examples [J].
Daley, DJ ;
Vesilo, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 70 (02) :265-282
[9]   The Hurst index of long-range dependent renewal processes [J].
Daley, DJ .
ANNALS OF PROBABILITY, 1999, 27 (04) :2035-2041
[10]  
DALEY DJ, 2000, FIELDS I COMMUNICATI, V28, P179