Inverse spectral problems for non-local Sturm-Liouville operators

被引:56
作者
Albeverio, S.
Hryniv, R. O.
Nizhnik, L. P.
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] SFB 611, Bonn, Germany
[3] IZKS, Bonn, Germany
[4] BiBoS, Bielefeld, Germany
[5] CERFIM, Locarno, Switzerland
[6] Acad Architettura, Mendrisio, Switzerland
[7] Inst Appl Problems Mech & Math, UA-79601 Lvov, Ukraine
[8] Lviv Natl Univ, UA-79602 Lvov, Ukraine
[9] Inst Math, UA-01601 Kiev, Ukraine
关键词
D O I
10.1088/0266-5611/23/2/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the inverse spectral problem for a class of Sturm-Liouville operators with singular non-local potentials and non- local boundary conditions. We study to what extent the operator from that class is determined by its spectrum, and point out subclasses in which the reconstruction problem from one spectrum has a unique solution.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 35 条
[1]   Inverse spectral problems for Sturm-Liouville operators in impedance form [J].
Albeverio, S ;
Hryniv, R ;
Mykytyuk, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (01) :143-177
[2]  
ALBEVERIO S, 2007, IN PRESS J MATH ANAL
[3]   INVERSE EIGENVALUE PROBLEMS FOR A STURM-LIOUVILLE EQUATION IN IMPEDANCE FORM [J].
ANDERSSON, LE .
INVERSE PROBLEMS, 1988, 4 (04) :929-971
[4]  
[Anonymous], DOKL AKAD NAUK SSSR
[5]  
[Anonymous], THEOR PROBAB APPL
[6]   Direct and inverse spectral theory of one-dimensional Schrodinger operators with measures [J].
Ben Amor, A ;
Remling, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (03) :395-417
[7]  
BEREZIN FA, 1961, SOV MATH DOKL, V137, P1011
[9]   Singular Schrodinger operators as limits of point interaction Hamiltonians [J].
Brasche, JF ;
Figari, R ;
Teta, A .
POTENTIAL ANALYSIS, 1998, 8 (02) :163-178
[10]   A Borg-Levinson theorem for Bessel operators [J].
Carlson, R .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 177 (01) :1-26