Nonlinear Stability for Reaction-Diffusion Models

被引:0
作者
Mulone, G. [1 ]
机构
[1] Citta Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
来源
NEW TRENDS IN FLUID AND SOLID MODELS | 2010年
关键词
LYAPUNOV FUNCTIONS; BENARD-PROBLEM; SYSTEMS; CONVECTION; CONVERGENCE; COMPETITION; EQUATIONS; LOTKA;
D O I
10.1142/9789814293228_0011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some linear and nonlinear stability results for constant solutions to reaction-diffusion models are presented. Optimal stability results with the reduction method (based on the classical theory of eigenvalues-eigenvectors) are recalled. Global stability has been obtained for the positive equilibria of two competition models and for the endemic state of an epidemic model with diffusion.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 32 条
  • [1] POPULATION-DYNAMICS OF FOX RABIES IN EUROPE
    ANDERSON, RM
    JACKSON, HC
    MAY, RM
    SMITH, AM
    [J]. NATURE, 1981, 289 (5800) : 765 - 771
  • [2] [Anonymous], 2012, SHOCK WAVES REACTION
  • [3] [Anonymous], 2003, MATH BIOL 2 SPATIAL
  • [4] [Anonymous], 2002, INTERDISCIPLINARY AP
  • [5] Bellman R., 1953, STABILITY THEORY DIF
  • [6] Beltrami E.J., 1997, Mathematics for Dynamic Modeling, VSecond
  • [7] Cantrell RS., 2004, Spatial Ecology via ReactionDiffusion Equations
  • [8] On the asymmetric May-Leonard model of three competing species
    Chi, CW
    Hsu, SB
    Wu, LI
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) : 211 - 226
  • [9] Stability and Lyapunov functions for reaction-diffusion systems
    Fitzgibbon, WB
    Hollis, SL
    Morgan, JJ
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (03) : 595 - 610
  • [10] Flavin JamesN., 1996, Qualitative estimates for partial differential equations