Demonstrating MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders

被引:0
作者
Suguitan, Michael [1 ]
Gomez, Randy [2 ]
Hoffman, Guy [1 ]
机构
[1] Cornell Univ, HRC2 Lab, Ithaca, NY 14853 USA
[2] Honda Res Inst Japan, Wako, Saitama, Japan
来源
HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION | 2020年
关键词
Social robots; deep learning; neural networks; affective generation;
D O I
10.1145/3371382.3378202
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We developed a method for modifying emotive robot movements with a reduced dependency on domain knowledge by using neural networks. We use hand-crafted movements for a Blossom robot and a classifying variational autoencoder to adjust affective movement features by using simple arithmetic in the network's learned latent embedding space. We will demonstrate the workflow of using a graphical interface to modify the valence and arousal of movements. Participants will be able to use the interface themselves and watch Blossom perform the modified movements in real time.
引用
收藏
页码:78 / 78
页数:1
相关论文
共 2 条
  • [1] Body Movements for Affective Expression: A Survey of Automatic Recognition and Generation
    Karg, Michelle
    Samadani, Ali-Akbar
    Gorbet, Rob
    Kuehnlenz, Kolja
    Hoey, Jesse
    Kulic, Dana
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2013, 4 (04) : 341 - U157
  • [2] Suguitan Michael, 2020, P 15 ACM IEEE INT C