Demonstrating MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Suguitan, Michael
[1
]
论文数: 引用数:
h-index:
机构:
Gomez, Randy
[2
]
Hoffman, Guy
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, HRC2 Lab, Ithaca, NY 14853 USACornell Univ, HRC2 Lab, Ithaca, NY 14853 USA
Hoffman, Guy
[1
]
机构:
[1] Cornell Univ, HRC2 Lab, Ithaca, NY 14853 USA
[2] Honda Res Inst Japan, Wako, Saitama, Japan
来源:
HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION
|
2020年
关键词:
Social robots;
deep learning;
neural networks;
affective generation;
D O I:
10.1145/3371382.3378202
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
We developed a method for modifying emotive robot movements with a reduced dependency on domain knowledge by using neural networks. We use hand-crafted movements for a Blossom robot and a classifying variational autoencoder to adjust affective movement features by using simple arithmetic in the network's learned latent embedding space. We will demonstrate the workflow of using a graphical interface to modify the valence and arousal of movements. Participants will be able to use the interface themselves and watch Blossom perform the modified movements in real time.