An Energy-Efficient High CSNR XNOR and Accumulation Scheme For BNN

被引:7
作者
Kushwaha, Dinesh [1 ]
Joshi, Ashish [2 ]
Kumar, Chaudhry Indra [3 ]
Gupta, Neha [1 ]
Miryala, Sandeep [4 ]
Joshi, Rajiv, V [5 ]
Dasgupta, Sudeb [1 ]
Bulusu, Anand [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee 247667, Uttar Pradesh, India
[2] Intel Technol India Pvt Ltd, IP Engn Grp IPG, Bengaluru 560103, India
[3] Delhi Technol Univ, Dept Elect Engn, New Delhi 110042, India
[4] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA
[5] Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Accuracy; accumulation; artificial intelligence (AI); compute signal margin (CSM); compute signal to noise ratio (CSNR); energy-efficiency; latency; neuron; SRAM; COMPUTING SRAM MACRO; IN-MEMORY MACRO; CNN ACCELERATOR;
D O I
10.1109/TCSII.2022.3149818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, we present an energy-efficient and high compute signal-to-noise ratio (CSNR) XNOR and accumulation (XAC) scheme for binary neural networks (BNNs). Transmission gates achieve a large compute signal margin (CSM) and high CSNR for accurate XAC operation. The 10T1C XNOR SRAM bit-cell performs the in-memory XAC operation without pre-charging the larger bitline capacitances and significantly reducing energy consumption per XAC operation. The validation of the proposed XAC scheme is done through the post-layout simulations in 65nm CMOS technology with V-DD of 1 V. The achieved 1 ns of latency and 2.36 fJ of energy consumption per XAC operation are (7.2 x , 7.2 x ) and (2 x , 1.31 x ) lower than state-of-the-art digital and analog compute in-memory (CIM) XAC schemes respectively. The proposed XAC design achieves 8.6 x improvement in figure-of-merit (FoM), over prior state-of-the-art. Moreover, (sigma/mu) average of 0.2% from Monte Carlo simulations show that proposed XAC scheme is robust against systematic mismatch and process variations.
引用
收藏
页码:2311 / 2315
页数:5
相关论文
共 17 条
[11]  
Si X, 2019, ISSCC DIG TECH PAP I, V62, P396, DOI 10.1109/ISSCC.2019.8662392
[12]   A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain Compute [J].
Valavi, Hossein ;
Ramadge, Peter J. ;
Nestler, Eric ;
Verma, Naveen .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (06) :1789-1799
[13]  
Yang J, 2019, ISSCC DIG TECH PAP I, V62, P394, DOI 10.1109/ISSCC.2019.8662435
[14]   XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks [J].
Yin, Shihui ;
Jiang, Zhewei ;
Seo, Jae-Sun ;
Seok, Mingoo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (06) :1733-1743
[15]   Vesti: Energy-Efficient In-Memory Computing Accelerator for Deep Neural Networks [J].
Yin, Shihui ;
Jiang, Zhewei ;
Kim, Minkyu ;
Gupta, Tushar ;
Seok, Mingoo ;
Seo, Jae-Sun .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (01) :48-61
[16]   A 55nm, 0.4V 5526-TOPS/W Compute-in-Memory Binarized CNN Accelerator for AIoT Applications [J].
Zhang, Hongtu ;
Shu, Yuhao ;
Jiang, Weixiong ;
Yin, Zihan ;
Zhao, Wenfeng ;
Ha, Yajun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) :1695-1699
[17]   In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array [J].
Zhang, Jintao ;
Wang, Zhuo ;
Verma, Naveen .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) :915-924