Modeling the temperature dependence of fatigue strength of metallic materials

被引:13
|
作者
He, Yi [1 ,2 ]
Li, Weiguo [1 ,2 ,3 ]
Yang, Mengqing [2 ]
Zhao, Ziyuan [2 ]
Zhang, Xuyao [2 ]
Dong, Pan [2 ]
Zheng, Shifeng [2 ]
Ma, Yanli [2 ]
机构
[1] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Key Lab Optoelect Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Theoretical prediction models; Temperature-dependent; Fatigue strength; Nondestructive predicting; Quantitative characterization; LOW-CYCLE FATIGUE; YIELD STRENGTH; THEORETICAL PREDICTION; TENSILE-STRENGTH; LIFE PREDICTION; BEHAVIOR; STEEL; MICROSTRUCTURE; DEFORMATION; SIMULATION;
D O I
10.1016/j.ijfatigue.2022.106896
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, a temperature-dependent fatigue failure criterion was proposed. A maximum energy density related to the fatigue failure of the material which is comprised of the strain energy and its equivalent heat energy was put forward at different temperatures. Two temperature-dependent fatigue strength models without fitting parameters were developed. The quantitative relationship between temperature, fatigue strength, Young's modulus, and melting point was established by the models. The model predictions were in good agreement with all the available experimental data for 17 metallic materials. A fast and simple non-destructive method for predicting temperature-dependent fatigue strength is realized in this work.
引用
收藏
页数:10
相关论文
共 50 条
  • [2] Databook on Fatigue Strength of Metallic Materials
    K.Shiozawa
    Toyama
    T.Sakai
    Shiga
    JournalofMaterialsScience&Technology, 1998, (02) : 191 - 192
  • [3] Modeling of temperature-dependent ultimate tensile strength for metallic materials
    He, Yi
    Li, Weiguo
    Yang, Mengqing
    Li, Ying
    Zhang, Xuyao
    Zhao, Ziyuan
    Dong, Pan
    Ma, Jianzuo
    Zheng, Shifeng
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2022, 191
  • [4] Dose Dependence of Strength After Low-Temperature Irradiation in Metallic Materials
    Thak Sang Byun
    Meimei Li
    Kenneth Farrell
    Metallurgical and Materials Transactions A, 2013, 44 : 84 - 93
  • [5] Dose Dependence of Strength After Low-Temperature Irradiation in Metallic Materials
    Byun, Thak Sang
    Li, Meimei
    Farrell, Kenneth
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A : 84 - 93
  • [6] An optimization criterion for fatigue strength of metallic materials
    Wang, B.
    Zhang, P.
    Liu, R.
    Duan, Q. Q.
    Zhang, Z. J.
    Li, X. W.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 736 : 105 - 110
  • [7] On the origins of fatigue strength in crystalline metallic materials
    Stinville, J. C.
    Charpagne, M. A.
    Cervellon, A.
    Hemery, S.
    Wang, F.
    Callahan, P. G.
    Valle, V.
    Pollock, T. M.
    SCIENCE, 2022, 377 (6610) : 1065 - +
  • [8] On the evaluation of overload effects on the fatigue strength of metallic materials
    Hemmesi, Kimiya
    Ellmer, Franz
    Farajian, Majid
    Varfolomeev, Igor
    Luke, Michael
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 401 - 410
  • [9] General relation between tensile strength and fatigue strength of metallic materials
    Pang, J. C.
    Li, S. X.
    Wang, Z. G.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 564 : 331 - 341
  • [10] EFFECT OF TEMPERATURE ON THE FATIGUE STRENGTH OF MATERIALS.
    Gisimov, G.P.
    Babaeva, Kh.E.
    Gabibov, I.A.
    Izvestia vyssih ucebnyh zavedenij. Neft i gaz, 1987, (11): : 85 - 89