Seroprevalence of SARS-CoV-2 antibodies in South Korea

被引:1
作者
Lee, Kwangmin [1 ]
Jo, Seongil [2 ]
Lee, Jaeyong [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Inha Univ, Dept Stat, 100 Inha Ro, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
Seroprevalence; SARS-CoV-2; Bayesian analysis; Informative prior;
D O I
10.1007/s42952-021-00131-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In 2020, Korea Disease Control and Prevention Agency reported three rounds of surveys on seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in South Korea. SARS-CoV-2 is the virus which inflicts the coronavirus disease 2019 (COVID-19). We analyze the seroprevalence surveys using a Bayesian method with an informative prior distribution on the seroprevalence parameter, and the sensitivity and specificity of the diagnostic test. We construct the informative prior of the sensitivity and specificity of the diagnostic test using the posterior distribution obtained from the clinical evaluation data. The constraint of the seroprevalence parameter induced from the known confirmed coronavirus 2019 cases can be imposed naturally in the proposed Bayesian model. We also prove that the confidence interval of the seroprevalence parameter based on the Rao's test can be the empty set, while the Bayesian method renders interval estimators with coverage probability close to the nominal level. As of the 30th of October 2020, the 95% credible interval of the estimated SARS-CoV-2 positive population does not exceed 318, 685, approximately 0.62% of the Korean population.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 17 条
  • [1] [Anonymous], 2011, EPIDEMIOLOGY RES INT
  • [2] SeroTracker: a global SARS-CoV-2 seroprevalence dashboard
    Arora, Rahul K.
    Joseph, Abel
    Van Wyk, Jordan
    Rocco, Simona
    Atmaja, Austin
    May, Ewan
    Yan, Tingting
    Bobrovitz, Niklas
    Chevrier, Jonathan
    Cheng, Matthew P.
    Williamson, Tyler
    Buckeridge, David L.
    [J]. LANCET INFECTIOUS DISEASES, 2020, 21 (04) : E75 - E76
  • [3] Bickel P. J., 2015, MATH STAT BASIC IDEA
  • [4] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [5] The use of confidence or fiducial limits illustrated in the case of the binomial.
    Clopper, CJ
    Pearson, ES
    [J]. BIOMETRIKA, 1934, 26 : 404 - 413
  • [6] The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2
    Gorbalenya, Alexander E.
    Baker, Susan C.
    Baric, Ralph S.
    de Groot, Raoul J.
    Drosten, Christian
    Gulyaeva, Anastasia A.
    Haagmans, Bart L.
    Lauber, Chris
    Leontovich, Andrey M.
    Neuman, Benjamin W.
    Penzar, Dmitry
    Perlman, Stanley
    Poon, Leo L. M.
    Samborskiy, Dmitry V.
    Sidorov, Igor A.
    Sola, Isabel
    Ziebuhr, John
    [J]. NATURE MICROBIOLOGY, 2020, 5 (04) : 536 - 544
  • [7] Brief clinical evaluation of six high-throughput SARS-CoV-2 IgG antibody assays
    Kohmer, Niko
    Westhaus, Sandra
    Ruehl, Cornelia
    Ciesek, Sandra
    Rabenau, Holger F.
    [J]. JOURNAL OF CLINICAL VIROLOGY, 2020, 129
  • [8] Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES)
    Kweon, Sanghui
    Kim, Yuna
    Jang, Myoung-jin
    Kim, Yoonjung
    Kim, Kirang
    Choi, Sunhye
    Chun, Chaemin
    Khang, Young-Ho
    Oh, Kyungwon
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (01) : 69 - 77
  • [9] Ministry of the Interior and Safety, 2021, DEM RES REG
  • [10] Social Distancing against COVID-19: Implication for the Control of Influenza
    Noh, Ji Yun
    Seong, Hye
    Yoon, Jin Gu
    Song, Joon Young
    Cheong, Hee Jin
    Kim, Woo Joo
    [J]. JOURNAL OF KOREAN MEDICAL SCIENCE, 2020, 35 (19)