An algorithm for Heilbronn's problem

被引:25
作者
Bertram-Kretzberg, C [1 ]
Hofmeister, T [1 ]
Lefmann, H [1 ]
机构
[1] Univ Dortmund, Lehrstuhl Informat 2, D-44221 Dortmund, Germany
关键词
hypergraphs; independent sets; Heilbronn; triangles;
D O I
10.1137/S0097539798348870
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Heilbronn conjectured that given arbitrary n points from the 2-dimensional unit square, there must be three points which form a triangle of area at most O(1/n(2)). This conjecture was disproved by a nonconstructive argument of Komlos, Pintz, and Szemeredi [J. London Math. Soc., 25 (1982), pp. 13-24] who showed that for every n there is a configuration of n points in the unit square where all triangles have area at least Omega(log n/n(2)). Considering a discretization of Heilbronn's problem, we give an alternative proof of the result from [ J. London Math. Soc., 25 (1982), pp. 13-24]. Our approach has two advantages: First, it yields a polynomial-time algorithm which for every n computes a configuration of n points where all triangles have area Omega(log n/n(2)). Second, it allows us to consider a generalization of Heilbronn's problem to convex hulls of k points where we can show that an algorithmic solution is also available.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 19 条
[1]   EXTREMAL UNCROWDED HYPERGRAPHS [J].
AJTAI, M ;
KOMLOS, J ;
PINTZ, J ;
SPENCER, J ;
SZEMEREDI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (03) :321-335
[2]  
Barequet G, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P76
[3]   The algorithmic aspects of uncrowded hypergraphs [J].
Bertram-Kretzberg, C ;
Lefmann, H .
SIAM JOURNAL ON COMPUTING, 1999, 29 (01) :201-230
[4]  
Fundia AD, 1996, RANDOM STRUCT ALGOR, V8, P131, DOI 10.1002/(SICI)1098-2418(199603)8:2<131::AID-RSA4>3.0.CO
[5]  
2-Z
[6]  
Graham R. L., 1995, HDB COMBINATORICS, V1
[7]   Clique is hard to approximate within n(1-epsilon) [J].
Hastad, J .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :627-636
[8]  
Hofmeister T, 1998, LECT NOTES COMPUT SC, V1450, P562, DOI 10.1007/BFb0055806
[9]  
KOMLOS J, 1982, J LOND MATH SOC, V25, P13
[10]  
KOMLOS J, 1981, J LOND MATH SOC, V24, P385