A spectral technique for solving two-dimensional fractional integral equations with weakly singular kernel

被引:15
作者
Bhrawy, Ali H. [1 ]
Abdelkawy, Mohamed A. [1 ,2 ]
Baleanu, Dumitru [3 ,4 ]
Amin, Ahmed Z. M. [5 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] CIC, Inst Engn, Dept Basic Sci, Giza, Egypt
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2018年 / 47卷 / 03期
关键词
Two-dimensional fractional integral equations with weakly singular; Spectral collocation method; Gauss quadrature; Shifted Legendre polynomials; Shifted Chebyshev polynomial; NUMERICAL-SOLUTION; CONNECTION COEFFICIENTS; DIFFERENTIAL-EQUATIONS; RECURRENCE RELATIONS; COLLOCATION METHOD; ALGORITHM;
D O I
10.15672/HJMS.2017.478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper adapts a new numerical technique for solving twodimensional fractional integral equations with weakly singular. Using the spectral collocation method, the fractional operators of Legendre and Chebyshev polynomials, and Gauss-quadrature formula, we achieve a reduction of given problems into those of a system of algebraic equations. We apply the reported numerical method to solve several numerical examples in order to test the accuracy and validity. Thus, the novel algorithm is more responsible for solving two-dimensional fractional integral equations with weakly singular.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 49 条
[1]   Fractional order integral equations of two independent variables [J].
Abbas, Said ;
Benchohra, Mouffak .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 :755-761
[2]  
Abbas S, 2012, APPL MATH E-NOTES, V12, P79
[3]  
Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
[4]  
Abdelkawy M.A., 2015, PROGR FRACTIONAL DIF, V1, P187
[5]   On Fractional Orthonormal Polynomials of a Discrete Variable [J].
Area, I. ;
Djida, J. D. ;
Losada, J. ;
Nieto, Juan J. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
[6]  
Area I., 2014, SIAM J NUMER ANAL, V54, P2210
[7]  
Area I., 2016, SIAM J NUMER ANAL, V52, P1867
[8]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[9]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[10]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156