Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation Methods

被引:35
作者
Cai, Wanyuan [1 ]
Ullah, Sana [1 ]
Yan, Lei [1 ]
Lin, Yi [1 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Inst Remote Sensing & Geog Informat Syst, Beijing Key Lab Spatial Informat Integrat & 3S Ap, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
ecosystem water use efficiency; carbon-water cycle coupling; flux measurement; remote sensing; carbon neutrality; GROSS PRIMARY PRODUCTION; LIGHT USE EFFICIENCY; ENVIRONMENT SIMULATOR JULES; VEGETATION INDEX; CARBON-DIOXIDE; TERRESTRIAL ECOSYSTEMS; NET-RADIATION; DAILY EVAPOTRANSPIRATION; CROP EVAPOTRANSPIRATION; MODEL DESCRIPTION;
D O I
10.3390/rs13122393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water use efficiency (WUE) is a key index for understanding the ecosystem of carbon-water coupling. The undistinguishable carbon-water coupling mechanism and uncertainties of indirect methods by remote sensing products and process models render challenges for WUE remote sensing. In this paper, current progress in direct and indirect methods of WUE estimation by remote sensing is reviewed. Indirect methods based on gross primary production (GPP)/evapotranspiration (ET) from ground observation, processed models and remote sensing are the main ways to estimate WUE in which carbon and water cycles are independent processes. Various empirical models based on meteorological variables and remote sensed vegetation indices to estimate WUE proved the ability of remotely sensed data for WUE estimating. The analytical model provides a mechanistic opportunity for WUE estimation on an ecosystem scale, while the hypothesis has yet to be validated and applied for the shorter time scales. An optimized response of canopy conductance to atmospheric vapor pressure deficit (VPD) in an analytical model inverted from the conductance model has been also challenged. Partitioning transpiration (T) and evaporation (E) is a more complex phenomenon than that stated in the analytic model and needs a more precise remote sensing retrieval algorithm as well as ground validation, which is an opportunity for remote sensing to extrapolate WUE estimation from sites to a regional scale. Although studies on controlling the mechanism of environmental factors have provided an opportunity to improve WUE remote sensing, the mismatch in the spatial and temporal resolution of meteorological products and remote sensing data, as well as the uncertainty of meteorological reanalysis data, add further challenges. Therefore, improving the remote sensing-based methods of GPP and ET, developing high-quality meteorological forcing datasets and building mechanistic remote sensing models directly acting on carbon-water cycle coupling are possible ways to improve WUE remote sensing. Improvement in direct WUE remote sensing methods or remote sensing-driven ecosystem analysis methods can promote a better understanding of the global ecosystem carbon-water coupling mechanisms and vegetation functions-climate feedbacks to serve for the future global carbon neutrality.
引用
收藏
页数:20
相关论文
共 131 条
[1]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[2]  
Ball JT, 1987, PROGR PHOTOSYNTHESIS, P221, DOI DOI 10.1007/978-94-017-0519-6_48
[3]   Remote sensing of ecosystem services: A systematic review [J].
Barbosa, Caio C. de Araujo ;
Atkinson, Peter M. ;
Dearing, John A. .
ECOLOGICAL INDICATORS, 2015, 52 :430-443
[4]   Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna [J].
Barton, Craig V. M. ;
Duursma, Remko A. ;
Medlyn, Belinda E. ;
Ellsworth, David S. ;
Eamus, Derek ;
Tissue, David T. ;
Adams, Mark A. ;
Conroy, Jann ;
Crous, Kristine Y. ;
Liberloo, Marion ;
Loew, Markus ;
Linder, Sune ;
McMurtrie, Ross E. .
GLOBAL CHANGE BIOLOGY, 2012, 18 (02) :585-595
[5]   Temporal and among-site variability of inherent water use efficiency at the ecosystem level [J].
Beer, C. ;
Ciais, P. ;
Reichstein, M. ;
Baldocchi, D. ;
Law, B. E. ;
Papale, D. ;
Soussana, J. -F. ;
Ammann, C. ;
Buchmann, N. ;
Frank, D. ;
Gianelle, D. ;
Janssens, I. A. ;
Knohl, A. ;
Koestner, B. ;
Moors, E. ;
Roupsard, O. ;
Verbeeck, H. ;
Vesala, T. ;
Williams, C. A. ;
Wohlfahrt, G. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23
[6]   Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate [J].
Beer, Christian ;
Reichstein, Markus ;
Tomelleri, Enrico ;
Ciais, Philippe ;
Jung, Martin ;
Carvalhais, Nuno ;
Roedenbeck, Christian ;
Arain, M. Altaf ;
Baldocchi, Dennis ;
Bonan, Gordon B. ;
Bondeau, Alberte ;
Cescatti, Alessandro ;
Lasslop, Gitta ;
Lindroth, Anders ;
Lomas, Mark ;
Luyssaert, Sebastiaan ;
Margolis, Hank ;
Oleson, Keith W. ;
Roupsard, Olivier ;
Veenendaal, Elmar ;
Viovy, Nicolas ;
Williams, Christopher ;
Woodward, F. Ian ;
Papale, Dario .
SCIENCE, 2010, 329 (5993) :834-838
[7]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[8]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[9]  
Bouriaud C.B, 2002, NEPHROLOGY, V4, P243
[10]   Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters [J].
Castanho, A. D. A. ;
Coe, M. T. ;
Costa, M. H. ;
Malhi, Y. ;
Galbraith, D. ;
Quesada, C. A. .
BIOGEOSCIENCES, 2013, 10 (04) :2255-2272