A smoothing newton method for semi-infinite programming

被引:40
作者
Li, DH [1 ]
Qi, LQ
Tam, J
Wu, SY
机构
[1] Hunan Univ, Dept Math Appl, Changsha, Peoples R China
[2] Hong Kong Polytech Univ, Dept Math Appl, Kowloon, Hong Kong, Peoples R China
[3] Natl Cheng Kung Univ, Inst Appl Math, Tainan 700, Taiwan
关键词
semi-infinite programming; KKT condition; semismooth equations; smoothing Newton method;
D O I
10.1007/s10898-004-8266-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer-Burrneister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration. only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.
引用
收藏
页码:169 / 194
页数:26
相关论文
共 37 条
[1]   Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities [J].
Chen, X ;
Qi, L ;
Sun, D .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :519-540
[2]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[3]  
Coope ID, 1998, NONCON OPTIM ITS APP, V25, P137
[4]   A PROJECTED LAGRANGIAN ALGORITHM FOR SEMI-INFINITE PROGRAMMING [J].
COOPE, ID ;
WATSON, GA .
MATHEMATICAL PROGRAMMING, 1985, 32 (03) :337-356
[5]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[7]  
FUKUSHIMA M, 1998, REFORMULATION NONSMO
[8]   LOCAL CONVERGENCE OF SQP METHODS IN SEMIINFINITE PROGRAMMING [J].
GRAMLICH, G ;
HETTICH, R ;
SACHS, EW .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (03) :641-658
[9]   SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS [J].
HETTICH, R ;
KORTANEK, KO .
SIAM REVIEW, 1993, 35 (03) :380-429
[10]  
HETTICH R, 1978, LECT NOTES CONTROL I, V7, P1