The Variation of the Fractional Maximal Function of a Radial Function

被引:31
作者
Luiro, Hannes [1 ]
Madrid, Jose [2 ,3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
[2] Aalto Univ, Dept Math, POB 11100, FI-00076 Aalto, Finland
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
芬兰科学院;
关键词
REGULARITY;
D O I
10.1093/imrn/rnx277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the regularity of the non-centered fractional maximal operator M-beta. As the main result, we prove that there exists C(n, beta) such that if q = n/(n - beta) and f is radial function, then parallel to DM(beta)f parallel to(Lq(Rn)) <= C(n, beta) parallel to Df parallel to(L1(Rn)). The corresponding result was previously known only if n = 1 or beta = 0. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all f is an element of W-1,W-1(R-n).
引用
收藏
页码:5284 / 5298
页数:15
相关论文
共 19 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]  
[Anonymous], 2013, J FUNCT ANAL, DOI DOI 10.1016/J.JFA.2013.05.012
[3]   ON A DISCRETE VERSION OF TANAKA'S THEOREM FOR MAXIMAL FUNCTIONS [J].
Bober, Jonathan ;
Carneiro, Emanuel ;
Hughes, Kevin ;
Pierce, Lillian B. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) :1669-1680
[4]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[5]   Endpoint Sobolev and BV continuity for maximal operators [J].
Carneiro, Emanuel } ;
Madrid, Jose ;
Pierce, Lillian B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (10) :3262-3294
[6]   DERIVATIVE BOUNDS FOR FRACTIONAL MAXIMAL FUNCTIONS [J].
Carneiro, Emanuel ;
Madrid, Jose .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) :4063-4092
[7]  
Carneiro E, 2012, MATH RES LETT, V19, P1245
[8]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[9]  
Hajlasz P, 2010, P AM MATH SOC, V138, P165
[10]   Regularity of the fractional maximal function [J].
Kinnunen, J ;
Saksman, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :529-535