Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks

被引:10
作者
Sit, Hilarie [1 ]
Earls, Christopher J. [1 ,2 ]
机构
[1] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
关键词
evaporation duct; electromagnetic propagation; bistatic radar sampling; artificial neural network; machine learning; model selection; RADIO REFRACTIVITY; INVERSION PROBLEM; PROPAGATION; MODEL;
D O I
10.1029/2019RS006798
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. This paper explains the rationale behind the selection of the ML network architecture, along with other model hyperparameters, in an effort to demystify the process of arriving at a useful ML model. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.
引用
收藏
页码:1181 / 1191
页数:11
相关论文
共 34 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Babin SM, 1997, J APPL METEOROL, V36, P193, DOI 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO
  • [3] 2
  • [4] BEAN B, 1968, DOVER BOOKS ELECT RE, P23
  • [5] Bergstra J, 2012, J MACH LEARN RES, V13, P281
  • [6] TRAINING WITH NOISE IS EQUIVALENT TO TIKHONOV REGULARIZATION
    BISHOP, CM
    [J]. NEURAL COMPUTATION, 1995, 7 (01) : 108 - 116
  • [7] Optimization Methods for Large-Scale Machine Learning
    Bottou, Leon
    Curtis, Frank E.
    Nocedal, Jorge
    [J]. SIAM REVIEW, 2018, 60 (02) : 223 - 311
  • [8] Large-Scale Machine Learning with Stochastic Gradient Descent
    Bottou, Leon
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 177 - 186
  • [9] Cawley GC, 2010, J MACH LEARN RES, V11, P2079
  • [10] A duct mapping method using least squares support vector machines
    Douvenot, Remi
    Fabbro, Vincent
    Gerstoft, Peter
    Bourlier, Christophe
    Saillard, Joseph
    [J]. RADIO SCIENCE, 2008, 43 (06)