Conformable double Laplace transform method for solving conformable fractional partial differential equations

被引:9
作者
Alfaqeih, Suliman [1 ]
Misirli, Emine [1 ]
机构
[1] Ege Univ, Fac Sci Dept Math, TR-35100 Izmir, Turkey
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2021年 / 9卷 / 03期
关键词
Conformable fractional derivative (CFD); Partial differential equation (PDE); Caputo fractional derivative; Telegraph equation; Laplace transform;
D O I
10.22034/cmde.2020.38135.1678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we utilize the Conformable Double Laplace Transform Method (CDLTM) to get the exact solutions of a wide class of Conformable fractional differential in mathematical physics. The results obtained show that the proposed method is efficient, reliable and easy to be implemented on related linear problems in applied mathematics and physics. Moreover, the (CDLTM) has a small computational size as compared to other methods.
引用
收藏
页码:908 / 918
页数:11
相关论文
共 19 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   A New Technique of Laplace Variational Iteration Method for Solving Space-Time Fractional Telegraph Equations [J].
Alawad, Fatima A. ;
Yousif, Eltayeb A. ;
Arbab, Arbab I. .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
[3]   Solving System of Conformable Fractional Differential Equations by Conformable Double Laplace Decomposition Method [J].
Alfaqeih, Suliman ;
Kayijuka, Idrissa .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (03) :275-290
[4]  
Avc D., 2017, THERM SCI, V21
[5]  
Debtnath L., 1997, Nonlinear Partial Dierential Equations for Scientist and Engineers
[6]  
Dhunde R. R., 2017, Int. J. Theor. Math. Phys., V7, P14, DOI 10.5923/j.ijtmp.20170701.04
[7]  
Hosseini K., 2017, WAVE RANDOM COMPLEX, V26, P19
[8]  
Iskender Eroglu B. B., 2017, ACTA PHYS POLONICA A, V132
[9]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[10]   An application of double Laplace transform and double Sumudu transform [J].
Kiliçman A. ;
Gadain H.E. .
Lobachevskii Journal of Mathematics, 2009, 30 (3) :214-223